Environmental, Health, and Safety Guidelines for Thermal Power Plants

Introduction

1. The Environmental, Health, and Safety (EHS) Guidelines are technical reference documents with general and industry-specific examples of Good International Industry Practice (GIIP).¹ When one or more members of the World Bank Group are involved in a project, these EHS Guidelines are applied as required by their respective policies and standards. These industry sector EHS guidelines are designed to be used together with the General EHS Guidelines document, which provides guidance to users on common EHS issues potentially applicable to all industry sectors. For complex projects, use of multiple industry-sector guidelines may be necessary. A complete list of industry-sector guidelines can be found at: www.ifc.org/ehsguidelines.

2. The EHS Guidelines contain the performance levels and measures that are generally considered to be achievable in new facilities by existing technology at reasonable costs. Application of the EHS Guidelines to existing facilities may involve the establishment of site-specific targets, based on environmental assessments and/or environmental audits as appropriate, with an appropriate timetable for achieving them.

3. The applicability of the EHS Guidelines should be tailored to the hazards and risks established for each project on the basis of the results of an environmental assessment (EA) in which site-specific variables, such as host country context, assimilative capacity of the environment, and other project factors, are taken into account. The applicability of specific technical recommendations should be based on the professional opinion of qualified and experienced persons.

4. When host country regulations differ from the levels and measures presented in the EHS Guidelines, projects are expected to achieve whichever is more stringent. If less stringent levels or measures than those provided in these EHS Guidelines are appropriate, in view of specific project circumstances, a full and detailed justification for any proposed alternatives is needed as part of the site-specific environmental assessment. This justification should demonstrate that the choice for any alternate performance levels is protective of human health and the environment.

¹ Defined as the exercise of professional skill, diligence, prudence and foresight that would be reasonably expected from skilled and experienced professionals engaged in the same type of undertaking under the same or similar circumstances globally. The circumstances that skilled and experienced professionals may find when evaluating the range of pollution prevention and control techniques available to a project may include, but are not limited to, varying levels of environmental degradation and environmental assimilative capacity as well as varying levels of financial and technical feasibility.
Applicability

5. This document includes information relevant to combustion, gasification\(^2\) or pyrolysis processes fueled by gaseous, liquid and solid fossil fuels and biomass\(^3\) and designed to deliver electrical or mechanical power, steam, heat, or any combination of these, regardless of the fuel type (except for solid waste which is covered under a separate Guideline for Waste Management Facilities), with a total rated heat input capacity equal to or above 50 Megawatt thermal input (MWth) on Higher Heating Value (HHV) basis.\(^4\) It applies to boilers, reciprocating engines, and combustion turbines in new and existing facilities. The guidelines do not apply to fuel cells. Annex A contains a detailed description of industry activities for this sector. Emissions guidelines applicable to facilities with a total heat input capacity of less than 50 MWth are presented in Section 1.1 of the General EHS Guidelines. Depending on the characteristics of the project and its associated activities (i.e., fuel sourcing and evacuation of generated electricity), readers should also consult the EHS Guidelines for Mining and the EHS Guidelines for Electric Power Transmission and Distribution.

6. Decisions to invest in this sector by one or more members of the World Bank Group are made within the context of the World Bank Group strategy on climate change.\(^5\)

7. This document is organized according to the following sections:

- Section 1.0 – Industry Specific Impacts and Management
- Section 2.0 – Performance Indicators and Monitoring
- Section 3.0 – References and Additional Sources
- Annex A – General Description of Industry Activities
- Annex B – Environmental Assessment Guidance for Thermal Power Projects

1.0 Industry-Specific Impacts and Management

8. The following section provides a summary of the most significant EHS issues associated with thermal power plants, which occur during the operational phase, along with recommendations for their management.

\(^2\) The guidelines only apply to gasification processes where syngas is produced and combusted to deliver power, steam and/or heat at the same facility. The production of syngas for other purposes or for export off site is not covered by these guidelines.

\(^3\) Throughout this document, biomass refers to living or recently dead biological material that can be used as fuel or for industrial production. Biomass can be obtained from several sources, including but not limited to wood, straw, miscanthus (elephant grass), hemp, corn (maize), sugarcane (bagasse), rice, palm (palm oil, coconut) among others. Biomass refers also to the biofuels (solid, liquid, gaseous) that can be produced from biomass.

\(^4\) Total capacity applicable to a facility with multiple units.

9. As described in the introduction to the General EHS Guidelines, the general approach to the management of EHS issues in industrial development activities, including power plants, should consider potential impacts as early as possible in the project cycle, including the incorporation of EHS considerations into the site selection and plant design processes in order to maximize the range of options available to prevent and control potential negative impacts.

10. Recommendations for the management of EHS issues common to largest industrial and infrastructure facilities during the construction and decommissioning phases are provided in the General EHS Guidelines.

1.1 Environment

11. Environmental issues in thermal power plant projects primarily include the following:

- Air emissions;
- Energy efficiency and Greenhouse Gas (GHG) emissions;
- Water consumption and aquatic habitat alteration;
- Effluents;
- Solid wastes;
- Hazardous materials and oil; and
- Noise.

Air Emissions

12. The primary emissions to air from the combustion of fossil fuels or biomass are sulfur dioxide (SO\textsubscript{2}), nitrogen oxides (NO\textsubscript{x}), particulate matter (PM),6 carbon monoxide (CO), and greenhouse gases, such as carbon dioxide (CO\textsubscript{2}). Depending on the fuel type and quality other substances such as heavy metals (e.g., mercury, arsenic, cadmium, vanadium, nickel, etc), halide compounds (including hydrogen chloride and hydrogen fluoride), dioxins and furans, unburned hydrocarbons and other volatile organic compounds (VOCs) may be emitted in smaller quantities, but may have a significant influence on the environment due to their toxicity and/or persistence. Sulfur dioxide and nitrogen oxides are also implicated in long-range and trans-boundary acid deposition.

13. The amount and nature of air emissions depends on factors such as the fuel (e.g., coal, fuel oil, natural gas, or biomass), the type and design of the combustion unit (e.g., reciprocating engines, combustion turbines, or boilers), operating practices, emission control measures (e.g., primary combustion control, secondary flue gas treatment), and the overall system efficiency. For example, natural gas-fired plants generally produce negligible quantities of PM and sulfur oxides, and levels of nitrogen oxides lower than those from coal plants (without emission reduction

6 PM is defined as total suspended particulates. PM includes PM10 (particles with diameters that are 10 micrometres and smaller) and PM2.5 (particles with diameters that are 2.5 micrometres and smaller). Impacts from fugitive sources (such as from coal / coal ash storage areas) may also occur due to subsequent deposition to surfaces.
measures), mainly due to differences in the fuel composition (ash, sulfur and nitrogen contents, respectively). Natural gas-fired plants also release lower quantities of carbon dioxide (a greenhouse gas) per unit of energy generated than do liquid and solid fossil-fueled plants.

14. Some measures, such as choice of fuel and use of measures to increase energy conversion efficiency, will reduce emissions of multiple air pollutants, including CO₂ per unit of energy generation. Optimizing energy utilization efficiency of the generation process depends on a variety of factors, including the nature and quality of fuel, the generation cycle type chosen (e.g., reciprocating engine, single or combined cycle gas turbine, steam turbine), its configuration (e.g., electricity generation or co- or tri-generation of electricity, heating and cooling), the operating temperature of the combustion turbines, the operating pressure and temperature of steam turbines, the local climatic conditions, the type of cooling system used and potential for nearby heat users. Recommended measures to prevent, minimize, and control air emissions include:

- Use of the cleanest fuel economically available (for example natural gas is preferable to oil, which is preferable to coal). For most large power plants, fuel choice is often part of the national energy policy, and fuels, combustion technology and pollution control technology, which are all interrelated, should be evaluated very carefully upstream of the project to optimize the project’s environmental performance;
- When burning coal, giving preference to high-heat-content, low-ash, and low-sulfur coal;
- Considering beneficiation to reduce ash content, especially for high ash coal by coal washing;\(^7\)
- Selection of the best power generation and pollution control technologies for the fuel chosen to balance the environmental and economic benefits. The choice of technology and pollution control systems will be based on the site-specific Environmental Assessment (EA). Some examples include the use of higher energy-efficiency systems, such as combined cycle gas turbine system for natural gas and oil-fired units, and supercritical, ultra-supercritical or potentially in the future integrated coal gasification combined cycle (IGCC) technology or carbon capture and storage (CCS) for coal-fired units;\(^8\)
- Designing stack heights and configurations according to Good International Industry Practice (GIIP) to avoid excessive ground level concentrations and minimize impacts, including acid deposition.\(^9\)

\(^7\) Coal washing is widespread in developed countries and increasingly is being introduced in developing countries. In India, around 20 percent of thermal coal was washed in 2014 compared to a global average of 50 percent (Infraline Energy, 2010). In China, approximately 40 percent of thermal coal is washed (Wang, 2013). If sulfur is inorganically bound to the ash, beneficiation will also reduce sulfur content.

\(^8\) According to Global CCS Institute, there are currently 15 large-scale CCS projects in operation worldwide located in the North Sea (Snøhvit and Sleipner), Algeria (In Salah), USA (Great Plains and Shute Creek), Canada (Boundary Dam and Quest), Brazil (Lula) and Saudi Arabia (Uthmaniyah). All new consented power plants of over 300MWe in Europe are CCR (requirement under EU Directive 2009/31/EC on the geological storage of carbon dioxide).

\(^9\) For specific guidance on calculating stack height, see Annex 1.1.3 of the **General EHS Guidelines**. Raising stack height should not be used to allow more emissions. However, if the proposed emission rates result in significant incremental ambient air quality impacts to the attainment of the relevant ambient air quality standards, options to raise stack height and/or to further reduce emissions should be considered in the EA. Typical examples of GIIP stack heights are up to around 200m for large coal-fired power plants, up to around 80m for HFO-fueled diesel engine power plants, and up to 100m for gas-fired combined cycle gas turbine power plants. Final selection of the stack height will depend on the terrain of the surrounding areas, nearby buildings, meteorological conditions, predicted incremental impacts and the location of existing and future receptors. Bundling of multiple flues into a common stack should be undertaken where practicable and where this is beneficial for air quality. Note that, in most cases, bundling of multiple flues into a common stack is beneficial.
• Considering use of combined heat and power (CHP, or co-generation) facilities. By combining useful heat output with power production, CHP facilities can achieve thermal efficiencies of 70–90 percent, compared with the 30–60 percent electrical efficiencies available from thermal power-only plants, which can contribute to primary energy savings.

• Emissions should not contribute a significant portion to the attainment of relevant ambient air quality standards, to allow future sustainable development in the same airshed. The approach described in Section 1.1 of the General EHS Guidelines should be followed.

Baseline Air Quality Data

15. Establishing baseline air quality is an important step in determining (i) whether the airshed is degraded or not, which in turn dictates the emission guideline values applicable to a project and (ii) whether emissions offsets are required. Data should be collected on ambient concentrations of relevant parameters including, for example, PM$_{10}$, PM$_{2.5}$, SO$_2$ (when sulfur containing fuels are used), NO$_X$, and ground-level ozone. Data should be collected within a defined airshed encompassing the proposed project, over averaging times consistent with relevant ambient air quality standards (such as 1-hour maximum, 24-hour maximum, annual average).

16. The scope of baseline data collection will depend on the project circumstances (e.g., project size, other emission sources in the airshed and the potential impacts on the airshed). Examples of suggested practices are:

- Seasonal manual sampling (for small or mid-sized projects e.g., < 1,200MWth).
- Continuous automatic sampling (for large projects e.g., >= 1,200MWth).
- Dispersion modeling of existing sources.

17. Baseline meteorological data collection is also likely to be required to support dispersion modelling in the air quality assessment. This data can be sourced from an existing meteorological station in the area, a site-specific meteorological station installed for the project, or prognostic meteorological data. In all cases, the data should be representative of the airshed and of a quality and format suitable for the modelling approach used. This includes taking account of likely fluctuations in meteorological conditions. As a general guideline, between three and five years of meteorological data can be considered to represent the range of conditions relevant to ambient air quality prediction.

10 The term "airshed" refers to the local area around the plant whose ambient air quality is directly affected by emissions from the plant. The size of the relevant local airshed will depend on plant characteristics, such as stack height, as well as on local meteorological conditions and topography. In some cases, airsheds are defined in legislation or by the relevant environmental authorities. If not, the EA should clearly define the airshed on the basis of consultations with those responsible for local environmental management.

11 Airshed is considered degraded if relevant ambient air quality standards (as defined in the General EHS Guidelines) are exceeded; determination of whether the airshed is degraded is carried out separately for each pollutant under consideration.

Air emission controls

18. Pollutant-specific control recommendations are provided below, though it should be noted that some emissions abatement offer multi-pollutant control benefits.

Sulfur Dioxide

19. The range of options for the control of sulfur oxides varies substantially because of large differences in the sulfur content of different fuels and in control costs as described in Table 1. The choice of technology depends on a cost-benefit analysis of the environmental performance of different fuels, the cost of controls, and the existence of a market for sulfur control by-products.\(^{13}\) Recommended measures to prevent, minimize, and control SO\(_2\) emissions include:

- Use of fuels with the lowest sulfur content economically feasible.
- Use of lime (CaO) or limestone (CaCO\(_3\)) for integrated desulfurization in coal-fired fluidized bed combustion boilers. This can achieve a removal efficiency of up to approximately 95 percent.\(^{14,15}\)
- Depending on the plant size, fuel quality, and potential for significant SO\(_2\) emissions, use of flue gas desulfurization (FGD) for large boilers using coal or oil and for large reciprocating engines. The optimal type of FGD system (e.g., wet FGD using limestone with up to 98 percent removal efficiency, semi-dry FGD using lime with up to 94 percent removal efficiency, seawater FGD with up to 90 percent removal efficiency) depends on the capacity of the plant, fuel properties, site conditions, residual life of the facility and the cost and availability of reagent as well as by-product disposal and utilization.\(^{16}\)
- Oil-fired reciprocating engine plants are generally too small in capacity to justify wet scrubbing, due to costs. If reducing fuel sulfur is insufficient, these plants would generally use semi-dry scrubbing using either slaked/hydrated lime (Ca(OH)\(_2\)) or sodium bicarbonate (NaHCO\(_3\)).

\(^{13}\) Regenerative Flue Gas Desulfurization (FGD) options (either wet or semi-dry) may be considered under these conditions.
\(^{14}\) EC (2016): FBC boilers can achieve SO\(_x\) removal efficiencies of 80–90 % in bubbling FBC boilers and more than 90–95 % in circulating FBC boilers
\(^{15}\) The SO\(_2\) removal efficiency of FBC technologies depends on the sulfur and lime content of fuel, sorbent quantity, ratio, and quality.
\(^{16}\) The use of wet scrubbers, in addition to particulate control equipment (e.g., ESP or fabric filter), has the advantage of also reducing emissions of HCl, HF, heavy metals, and further particulates remaining after ESP or fabric filter. Wet scrubbing is almost always the system of choice for large utility coal- or oil-fired boilers. Because of higher costs, the wet scrubbing process is generally not used at boiler plants with a capacity of less than 100MWth (EC, 2016).
Nitrogen Oxides

20. Formation of nitrogen oxides can be controlled by modifying operational and design parameters of the combustion process (primary measures), such as:

- Use of low NOx burners with other combustion modifications, such as low excess air (LEA) firing, over-fire air, or flue gas recirculation for boiler plants;
- Use of dry low-NOx combustors for combustion turbines burning natural gas;
- Use of water injection for combustion turbines using liquid fuels;\(^\text{17}\)
- Optimization of operational parameters for existing reciprocating engines burning natural gas to reduce NOx emissions;

\(^{17}\) Water injection may not be practical for industrial combustion turbines in all cases depending on the availability of a suitable water supply.
Use of lean-burn, cool operating concept for new gas engines; and
Use of Miller principle for reciprocating engines.18

21. Additional treatment of NO\textsubscript{X} from the flue gas (secondary measures; see Table 2) may be required in some cases to meet emissions limits and/or ambient air quality objectives. Recommended secondary measures to prevent, minimize, and control NO\textsubscript{X} emissions include:

- Use of a selective catalytic reduction (SCR) system for pulverized coal-fired, oil-fired, and gas-fired boilers or a selective non-catalytic reduction (SNCR) system for a fluidized-bed boiler (or less effectively in other types of combustion boilers) and
- Use of SCR for combustion turbines and reciprocating engines burning gaseous or liquid fuels.

<table>
<thead>
<tr>
<th>Type</th>
<th>Characteristics</th>
<th>Plant Capital Cost IncreaseA</th>
</tr>
</thead>
</table>
| SCRB | - NO\textsubscript{X} emission reduction rate of 80–95%
- Uses 0.5% of electricity generated
- Uses ammonia or urea as reagent.
- Ammonia slip increases with increasing NH\textsubscript{3}/NO\textsubscript{X} ratio may cause a problem (e.g., too high ammonia in the fly ash). Larger catalyst volume and improving the mixing of NH\textsubscript{3} and NO\textsubscript{X} in the flue gas may be needed to avoid this problem.
- Requires optimal temperature window (generally above 370°C) for conventional catalysts.
- Temperature minimum is dependent on SO\textsubscript{3} content of flue gases, to avoid clogging of the matrix
- For flue gases with high particulate loadings post-cleaning SCR, with lower temperature catalysts (e.g., 150–200°C) is feasible, but with lower effectiveness and extra complications of flue gas reheating
- Catalysts may contain heavy metals. Proper handling and disposal / recycle of spent catalysts is needed.
- Life of catalysts depends on the contaminant levels in the flue gases. For boiler plant lives of 6-10 years (coal-fired), 8–12 years (oil-fired) and more than 10 years (gas-fired) have been achieved.
- Requires optimal temperature window (generally above 370°C) for conventional catalysts. | 4–9% (coal-fired boiler)
1–15% (gas-fired combined cycle combustion turbine) |
| SNCRC | - NO\textsubscript{X} emission reduction rate of 50–70% (fluidized beds); 30–50% (other types of combustion boiler)
- Uses 0.1–0.3% of electricity generated
- Uses ammonia or urea as reagent.
- Cannot be used effectively on gas turbines or gas engines, as these do not generally provide the right temperature and residence time conditions for the reaction between NO\textsubscript{X} and the reagent.
- Operates without using catalysts.
- Potential for higher ammonia slip than SCR. | 1–2% |

A Generally, the smaller the unit (i.e., the engine, boiler, CCGT) capacity, the higher the percentage capital cost increase. Higher SCR efficiency (for example where greater NO\textsubscript{X} reduction is required to meet applicable emission limits) also typically results in higher capital cost increases.

B Electricity price increase associated with the use of SCR has been estimated at 7–11% for mainland Europe and 11–25% for remote areas such as islands (UNECE, 2011). Higher costs in remote areas are associated with the higher costs of transporting reagents to the plant.

C SNCR typically has lower capital costs than SCR, but higher operational costs associated with the large quantities of reagent required (Process Combustion Corporation, 2016).

18 The Miller principle involves late or early closing of the air inlet valves to effectively make the compression stroke shorter than the expansion stroke. This increases the efficiency of the engine, and also suppresses in-cylinder temperatures and thus reduces NO\textsubscript{X} formation (UNECE, 2012).
Particulate Matter (PM)

22. PM19 is emitted from the combustion process, especially from the use of heavy fuel oil, coal, and solid biomass. PM arises from incomplete combustion or the presence of incombustible material in the fuel. Primary PM abatement is to use natural gas, other gases or low ash liquid fuels instead of higher ash alternatives. The proven technologies for particulate removal in power plants are fabric filters (FFs) and electrostatic precipitators (ESPs), with characteristics summarized in Table 3. The choice between a fabric filter and an ESP depends on the fuel properties, type of FGD system if used for SO\textsubscript{2} control, and ambient air quality objectives. Hybrid ESP/Fabric Filter equipment also exists. PM can also be released during transfer and storage of coal, biomass and additives, such as lime.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
Type & Performance / Characteristics of Particulate Removal SystemsA \\
\hline
ESP & \begin{itemize}
\item Removal efficiency of >96.5\% (<1 μm), >99.95\% (>10 μm)
\item Very dependent on particulate composition and size. For example, for new or rebuilt oil boilers only 90\% capture may be achieved; and 40 to 60\% on older boilers.
\item 0.1–1.8\% of electricity generated is used
\item It might not work on particulates with very high electrical resistivity. In these cases, flue gas conditioning (FGC) may improve ESP performance.
\item Can handle very large gas volume with low pressure drops
\end{itemize} \\
\hline
Fabric Filter & \begin{itemize}
\item Removal efficiency of >99.6\% (<1 μm), >99.95\% (>10 μm). Removes smaller particles than ESPs.
\item Performance degrades with time
\item Periodic replacement of filter bags needed, typically on a rolling three-year program, resulting in higher operating costs than ESPs
\item 0.2–3\% of electricity generated is used
\item Filter life decreases as coal S content increases
\item Filter life affected by material choice and flue gas temperature. Suitable materials can typically operate at up to 220°C.
\item Operating costs go up considerably as the fabric filter becomes dense to remove more particles
\item If ash is particularly reactive, it can weaken the fabric, which eventually disintegrates.
\item Some fuels (such as oils) can clog the bag material, and so may not be suitable
\item For solid fuels, by-pass of the filter during start-up on oil would be normal so as to avoid bag material contamination.
\end{itemize} \\
\hline
Wet Scrubber & \begin{itemize}
\item Removal efficiency of >98.5\% (<1 μm), >99.9\% (>10 μm)
\item Up to 3\% of electricity generated is used.
\item As a secondary effect, can remove and absorb gaseous heavy metals
\item Wastewater needs to be treated
\item Exit flue gas is cold, and so may require reheating for dispersion purposes (increasing operating costs)
\item Low capital costs compared to ESP and FF, which may be offset by relatively high operating costs
\end{itemize} \\
\hline
\end{tabular}
\caption{Table 3 – Performance / Characteristics of Particulate Removal SystemsA}
\end{table}

23. Recommendations to prevent, minimize, and control PM emissions include:

\begin{itemize}
\item Installation of particulate controls capable of over 99 percent removal efficiency, such as ESPs or Fabric Filters (baghouses), for solid fuel-fired power plants. The advanced control for particulates is a wet ESP,
\end{itemize}

19 Defined as total suspended particulates (TSP).
which further increases the removal efficiency and also collects condensables (e.g., sulfuric acid mist) that are not effectively captured by an ESP or a fabric filter;20

- Use of ESP for HFO-fueled reciprocating engine power plants, including those using high ash and sulfur content fuel;
- Use of loading and unloading equipment that minimizes the height of solid fuel drop to the stockpile to reduce the generation of fugitive PM and installing of cyclone PM collectors;
- Use of water spray systems to reduce the formation of fugitive PM from solid fuel storage in arid environments;
- Use of enclosed conveyors with well designed, extraction and filtration equipment on conveyor transfer points to prevent the emission of PM;
- For solid fuels whose fine fugitive PM could contain vanadium, nickel and Polycyclic Aromatic Hydrocarbons (PAHs) (e.g., in coal and petroleum coke), use of full enclosure during transportation and covering stockpiles where necessary;
- Design and operate transport systems to minimize the generation and transport of PM on site;
- Storage of lime or limestone in silos with well designed, extraction and filtration equipment; and
- Use of wind fences in open storage of coal or other solid fuel (such as biomass), or use of enclosed storage structures to minimize fugitive PM emissions where necessary, applying special ventilation systems in enclosed storage to avoid PM explosions (e.g., use of cyclone separators at coal transfer points).

24. See Annex 1.1.2 of the General EHS Guidelines for an additional illustrative presentation of point source emissions prevention and control technologies.

Other Pollutants

25. Depending on the fuel type and quality, other air pollutants may be present in environmentally significant quantities requiring proper consideration in the evaluation of potential impacts to ambient air quality and in the design and implementation of management actions and environmental controls. Examples of additional pollutants include mercury in coal, vanadium in heavy fuel oil, and other heavy metals present in waste fuels such as petroleum coke (petcoke) and used lubricating oils.21 Recommendations to prevent, minimize, and control emissions of other air pollutants such as mercury in particular from thermal power plants include the use of conventional secondary controls such as fabric filters or ESPs operated in combination with FGD techniques, such as limestone FGD, Dry

20 Flue gas conditioning (FGC) is a recommended approach to address the issue of low gas conductivity and lower ESP collection performance which occurs when ESPs are used to collect particulates from very low sulfur fuels. One particular FGC design involves introduction of sulfur trioxide (SO3) gas into the flue gas upstream of the ESP, to increase the conductivity of the flue gas dramatically improve the ESP collection efficiency. There is typically no risk of increased SOx emissions as the SO3 is highly reactive and adheres to the particulates.

21 In these cases, the EA should address potential impacts to ambient air quality for such heavy metals as mercury, nickel, vanadium, cadmium, lead, etc. The potential for significant impacts of heavy metal emissions is project specific and should be determined on a case-by-case basis. The approach adopted in the EU is to 'identify significant impacts': prescriptive methods for doing so are not defined. Where professional judgement or qualitative assessments are considered insufficient to screen out heavy metal impacts, the use of screening models (e.g., AERSCREEN or equivalent) may be appropriate to determine whether there is potential for significant impacts.
Lime FGD, or sorbent injection. Additional removal of metals such as mercury can be achieved in a high particulate SCR system along with powdered activated carbon, bromine-enhanced Powdered Activated Carbon (PAC) or other sorbents. Since mercury emissions from thermal power plants pose potentially significant local and transboundary impacts to ecosystems and public health and safety through bioaccumulation, particular consideration should be given to their minimization in the EA and accordingly in plant design.

Emissions Offsets

26. Facilities in degraded airsheds should minimize incremental impacts by achieving emission guideline values outlined in Table 6, and following the approach described in Section 1.1 of the General EHS Guidelines. As noted in Section 1.1, it may be necessary for projects to meet more stringent limits than those in Table 6 and possibly also offset to mitigate unacceptable ambient air quality impacts. Offset provisions should be implemented before the power plant comes fully on stream. Suitable offset measures could include reductions in emissions of PM, sulfur dioxide, or nitrogen oxides, as necessary through (a) the installation of new or more effective controls at other units within the same facility or at other power plants in the same airshed, (b) the installation of new or more effective controls at other large sources, such as district heating plants or industrial plants, in the same airshed, or (c) investments in gas distribution or district heating systems designed to substitute for the use of coal for residential heating and other small boilers. Wherever possible, the offset provisions should be implemented within the framework of an overall air quality management strategy. The monitoring and enforcement of ambient air quality in the airshed to ensure that offset provisions are complied with would be the responsibility of the local or national agency responsible for granting and supervising environmental permits. Project sponsors who cannot engage in the negotiations necessary to put together an offset agreement (for example, due to the lack of the local or national air quality management framework) should reconsider the selection of the proposed project site.

Energy Efficiency and GHG Emissions

27. Carbon dioxide, one of the major greenhouse gases (GHGs) under the UN Framework Convention on Climate Change, is emitted from the combustion of fossil fuels. Project developers should consider opportunities to minimize potential emission of greenhouse gases from the outset of thermal power plant design. Opportunities include strategic choices (e.g., choice of fuel: coal, gas, oil, renewables) and from a specific level (type of plant).

22 The EU Final Draft BAT Reference (BREF) note (2016) suggests that for Fabric Filters or Electrostatic Precipitators operated in combination with FGD techniques at boiler plants, a mercury removal rate of 85% to 95% in the additional presence of SCR can be obtained (EC, 2016).

23 In December 2011 the U.S. Environmental Protection Agency (EPA) announced standards to limit mercury (Hg), acid gases and other toxic pollution from power plants (US EPA, 2011). There are two broad approaches to mercury control in the US: activated carbon injection and multipollutant control (i.e., enhancing Hg capture in control devices designed to remove PM, SO₂ or NOₓ). Activated carbon injection increases the amount of particulate matter requiring disposal but can achieve mercury capture rates of up to 94.5 percent (US EPA, 2005). The EU IED does not set statutory limits for mercury or other heavy metals. The EU Final Draft BAT Reference (BREF) note (2016) provides typical mercury removal efficiencies of activated carbon injection (90 percent on average) and existing control technologies designed for controlling pollutants other than mercury, such as fabric filters (average 40 percent Hg removal) and wet scrubber FGD systems (reported 30–50 percent Hg removal) (EC, 2016).

24 Airshed is considered degraded if relevant ambient air quality standards (as defined in the General EHS Guidelines) are exceeded; determination of whether the airshed is degraded (and thus whether offset provisions should be considered) is carried out separately for each pollutant under consideration.
28. Recommendations to avoid, minimize, and offset emissions of carbon dioxide from new and existing thermal power plants include, among others:

- Use of less carbon intensive fossil fuels (i.e., fuel that contains less carbon per unit of calorific value—gas is less than oil and oil is less than coal) or co-firing with low-carbon fuels (e.g., biomass, which is considered carbon-neutral if produced in a sustained yield without consideration of energy used for harvesting, processing and transportation);
- Use of higher energy conversion efficiency technology, subject to its technical suitability for the application and financial feasibility. For example, supercritical plants have a higher energy conversion efficiency than subcritical plants, combined cycle gas turbine (CCGT) plants have a higher energy conversion efficiency than simple cycle plants, and CHP have higher energy conversion efficiency than power only plants. Other elements of the plant can also affect efficiency such as steam cycle parameters (e.g., pressure and temperature) for power plants based on the steam Rankine cycle, cooling and abatement technologies, electrical efficiency (e.g., electrical motors for fans and pumps, ESP), energy conversion efficiency and energy conservation. Use of high performance monitoring and process control techniques, good design and maintenance of the combustion system so that initially designed efficiency and GHG emission performance can be maintained;
- Where feasible, include transmission and distribution loss reduction and demand side measures. For example, an investment in peak load management could reduce cycling requirements of the generation facility thereby improving its operating efficiency. The feasibility of these types of off-set options may vary depending on whether the facility is part of a vertically integrated utility or an independent power producer;
- Consider fuel cycle emissions and off-site factors such as fuel supply, proximity to load centers, potential for off-site use of waste heat, or use of nearby waste gases (blast furnace gases or coal bed methane) as fuel; and
- Where applicable laws do not include a carbon management framework, consideration should be given to participation in voluntary greenhouse gas emission management mechanisms (e.g., trading schemes), or high-quality emissions offsets.

29. During the development of thermal power projects, proponents should consider alternative solutions including technical suitability and trade-offs between capital and operating costs involved in the use of different technologies with documented reasoning of why the selected option is the most feasible. For example, supercritical plants may have a higher capital cost than subcritical plants for the same capacity, but lower operating costs. New facilities should be aimed to be in the top quartile of energy efficiency for the country/region average plant of the same fuel type and capacity. Rehabilitation of existing facilities must achieve significant improvements in efficiency. Plants should use high performance monitoring and process control techniques, good design, and maintenance of the combustion system, so that initially designed efficiency, and GHG emission performance can be maintained.

28 See Section 1.2 of the General EHS Guidelines.
30. Typical CO₂ emissions for different fuels/technologies are presented as a guide in Table 4. The values in Table 4 are indicative and are not intended to be used as benchmarks, as regional performance varies (for example due to ambient temperature differences).

31. New thermal coal power stations with a combined net electrical generating capacity at or over 300MWe should evaluate Carbon Capture and Storage Readiness (CCR) by assessing if (a) suitable storage or reuse options are available, (b) transport facilities are technically and economically feasible, (c) it is technically and economically feasible to retrofit for carbon dioxide capture.27

32. Table 4(B) presents typical efficiency penalties for different carbon capture technologies at thermal power plants.

Water Consumption and Aquatic Habitat Alteration

33. Condensing steam turbines used with boilers and heat recovery steam generators (HRSG) used in combined cycle gas turbine units require a cooling system to condense steam used to generate electricity. Cooling systems used in thermal power plants may include: (i) once-through cooling system where sufficient cooling water and receiving surface water are available; (ii) closed circuit wet (evaporative) cooling system; and (iii) closed circuit dry cooling system (e.g., air cooled condensers).

34. Thermal power plants are likely to be affected by the impacts of climate change since they are often: (i) located in areas with heightened sensitivity to climate change (such as in coastal zones and on estuaries); (ii) operated over a long period (20 years or more); (iii) reliant on fuel supplies that could be disrupted; and, (iv) reliant on water as an integral part of generation. Climate change can heighten constraints on water resources through altered precipitation patterns (e.g., droughts depleting water resources for cooling) and average temperatures thereby limiting the heat absorbing capacity of the water course, and therefore power generating capacity. A project’s vulnerability to climate change should be screened28 and, if vulnerable (for example projects in regions where water resources are already limited), the EA should assess climate resilience in terms of current and future water availability, temperature and heat absorbing capacity of the water course.29 The outcome of this assessment may influence project design to reduce the project’s climate vulnerability. For example, power generation in an arid area may use dry rather than evaporative cooling.

26 Required in Europe under Directive 2010/75/EU on industrial emissions (integrated pollution prevention and control) (Art 36). In the UK, CCR requirements apply to power stations with an electrical generating capacity at or over 300MW and of a type covered by the EU Large Combustion Plant Directive. CCR is in different stages of development worldwide; as of 2015 many countries including India, Italy and South Africa are considered to be ‘making progress’ by the Global CCS Institute (GCCSI, 2015), the UK, Australia and China are ‘well advanced’ and Brazil, Norway and Northern America are ‘prepared for large scale storage.

27 Under the Clean Technology Fund (CTF) and many lenders’ coal fired power generation sector policies, a project needs to be developed in line with the “CCS Ready” criteria (e.g., CTF criteria). These conditions match the provisions of EU Policy (EC, 2009) and GCCSI guidance on CCS Ready (GCCSI, 2010). They are also consistent with the conclusions of the IPPC Fourth Assessment Report (IPCC, 2011).

29 For example, the European EIA Directive 2011/92/EU (as amended by Directive 2014/52/EU) requires assessment of the impact of projects on climate change (for example greenhouse gas emissions) and their vulnerability to climate change.

30 For example, the European EIA Directive 2011/92/EU (as amended by Directive 2014/52/EU) requires assessment of the impact of projects on climate change (for example greenhouse gas emissions) and their vulnerability to climate change.
Table 4 – Typical \(\text{CO}_2 \) emissions performance of new thermal power plants

Thermal power plant efficiency and \(\text{CO}_2 \) emissions performance are dependent on a number of factors including, but not limited to, fuel type, technology, unit size, local climatic conditions, altitude and cooling technology. Values presented in this table are indicative and, due to the degree of variation in power plant characteristics, may not be directly comparable to actual new facilities. For this reason, values should not be interpreted as a benchmark or limit value and are for guidance only.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Technology</th>
<th>Efficiency (%)
(source no. in brackets)</th>
<th>Details and reason for range of values
<(source no. in brackets)</th>
<th>(\text{CO}_2) (g/kWh)
(source no. in brackets)</th>
<th>Details and reason for range of values
<(source no. in brackets)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Efficiency: %Net, LHV</td>
<td>Details and reason for range of values: %Net, LHV</td>
<td>Details and reason for range of values: %Net, LHV</td>
<td>Details and reason for range of values: %Net, LHV</td>
</tr>
<tr>
<td>Coal</td>
<td>Ultra-Supercritical</td>
<td>39-48 (1,2,4,5,13,C1)</td>
<td>NDA / Fuel type (lignite-bituminous)</td>
<td>NDA / Fuel type (bituminous-lignite)</td>
<td>NDA / Fuel type (bituminous-lignite)</td>
</tr>
<tr>
<td></td>
<td>Supercritical</td>
<td>40-46 (2,4,5,7,12,15,C1)</td>
<td>NDA / Fuel type (lignite-bituminous)</td>
<td>NDA / Fuel type (bituminous-lignite)</td>
<td>NDA / Fuel type (bituminous-lignite)</td>
</tr>
<tr>
<td></td>
<td>Subcritical</td>
<td>38-43 (2,4,5,7,12,17,C1)</td>
<td>Unit size, fuel type / Fuel type, region</td>
<td>Unit size, region, fuel type / Fuel type, region</td>
<td>Unit size, region, fuel type / Fuel type, region</td>
</tr>
<tr>
<td></td>
<td>IGCC</td>
<td>41-50 (1,2,4,5,7,12,C1)</td>
<td>NDA / Fuel type, region</td>
<td>NDA / Efficiency, fuel type (bituminous-lignite)</td>
<td>NDA / Efficiency, fuel type (bituminous-lignite)</td>
</tr>
<tr>
<td>Gas</td>
<td>CCGT Simple Cycle</td>
<td>46-62 (5,7,9,14,16,C1)</td>
<td>Unit size</td>
<td>Unit size / Unit size</td>
<td>Unit size / Unit size</td>
</tr>
<tr>
<td></td>
<td>Boiler</td>
<td>36-42 (5,6,9,C1)</td>
<td>Unit size / Unit size</td>
<td>Unit size / Unit size</td>
<td>Unit size / Unit size</td>
</tr>
<tr>
<td></td>
<td>Reciprocating Engine</td>
<td>40-42 (3)</td>
<td>NDA / None given</td>
<td>NDA / Plant efficiency</td>
<td>NDA / Plant efficiency</td>
</tr>
<tr>
<td>Oil</td>
<td>CCGT Simple cycle</td>
<td>47-60 (16)</td>
<td>NDA / None given</td>
<td>NDA / None given</td>
<td>NDA / None given</td>
</tr>
<tr>
<td></td>
<td>Reciprocating Engine</td>
<td>47-40 (3,10,16,C1)</td>
<td>Based on 50MWe turbine / None given</td>
<td>Based on 50MWe turbine / None given</td>
<td>Based on 50MWe turbine / None given</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Details and reason for range of values: %Net, LHV</td>
<td>Details and reason for range of values: %Net, LHV</td>
<td>Details and reason for range of values: %Net, LHV</td>
<td>Details and reason for range of values: %Net, LHV</td>
</tr>
<tr>
<td>Coal</td>
<td>Ultra-Supercritical</td>
<td>47 (11)</td>
<td>NDA / Based on 500MWe PC plant</td>
<td>NDA / Fuel type (other coal-lignite)</td>
<td>NDA / Fuel type (other coal-lignite)</td>
</tr>
<tr>
<td></td>
<td>Supercritical</td>
<td>44 (11)</td>
<td>NDA / Based on 500MWe PC plant</td>
<td>NDA / Fuel type (other coal-lignite)</td>
<td>NDA / Fuel type (other coal-lignite)</td>
</tr>
<tr>
<td></td>
<td>Subcritical</td>
<td>41-42 (11)</td>
<td>NDA / Unit size (300MW-500MW)</td>
<td>NDA / Fuel type (other coal-lignite)</td>
<td>NDA / Fuel type (other coal-lignite)</td>
</tr>
<tr>
<td></td>
<td>IGCC</td>
<td>47-48 (11)</td>
<td>NDA / Unit size, coal slurry entrained bed</td>
<td>NDA / Fuel type (other coal-lignite)</td>
<td>NDA / Fuel type (other coal-lignite)</td>
</tr>
<tr>
<td>Gas</td>
<td>CCGT Simple Cycle</td>
<td>51 (12)</td>
<td>NDA / Based on 300MWe unit. Based on 150MWe unit / 300MWe unit</td>
<td>NDA / Based on 300MWe unit. Based on 150MWe unit / 300MWe unit</td>
<td>NDA / Based on 300MWe unit. Based on 150MWe unit / 300MWe unit</td>
</tr>
<tr>
<td></td>
<td>Reciprocating Engine</td>
<td>34 (12)</td>
<td>NDA / Based on 300MWe unit. Based on 150MWe unit / 300MWe unit</td>
<td>NDA / Based on 300MWe unit. Based on 150MWe unit / 300MWe unit</td>
<td>NDA / Based on 300MWe unit. Based on 150MWe unit / 300MWe unit</td>
</tr>
<tr>
<td>Oil</td>
<td>CCGT</td>
<td>51 (12)</td>
<td>NDA / Based on 300MWe unit. Based on 150MWe unit / 300MWe unit</td>
<td>NDA / Based on 300MWe unit. Based on 150MWe unit / 300MWe unit</td>
<td>NDA / Based on 300MWe unit. Based on 150MWe unit / 300MWe unit</td>
</tr>
</tbody>
</table>

MAY 31, 2017
Environmental, Health, and Safety Guidelines

THERMAL POWER PLANTS

DRAFT FOR SECOND PUBLIC CONSULTATION—MAY/JUNE 2017

<table>
<thead>
<tr>
<th>Simple cycle</th>
<th>Reciprocating Engine</th>
<th>Boiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 (12)</td>
<td>42-48 (10)</td>
<td>NDA</td>
</tr>
<tr>
<td>36 (12)</td>
<td>NDA</td>
<td>41 (12)</td>
</tr>
</tbody>
</table>

Based on 150MWe unit / 300MWe unit

- None given / NDA
- 780-820 (11,C2)
- 556-663 (C2)
- 651-680 (12,C2)

Fuel type (LFO-HFO) / NDA

Based on 150MWe unit / NDA

Sources:

2. World Bank (2006a)
4. IEA (2012)
5. European Commission (2013)
8. Wartsila product guides
10. Review of manufacturer data (Wartsila and MAN)
11. ESMAP (2007)
12. World Energy Council (2013)
15. Review of manufacturer data (Foster Wheeler)
17. World Bank (2008)
18. DUKES (2016)

Notes:

- **a)** C1 = Calculated values. Where there is a reference for plant efficiency for a certain fuel and technology type on an HHV basis, a conversion has been calculated to ensure that the reference is replicable on the corresponding LHV basis. The following equation has been used in the conversion:

\[
\text{LHV efficiency} = \text{HHV efficiency} / (100 - ((\text{HHV of the fuel} - \text{LHV of the fuel}) / \text{HHV of the fuel}) \times 100) \times 100
\]

For example, the efficiency expressed in HHV terms of an oil fired simple cycle plant of 32% on a LHV basis is as follows:

\[
\text{HHV efficiency} = 32 \times (100 - (43.4 \text{GJ/t} / 43.4 \text{GJ/t}) \times 100) / 100 = 30\%
\]

Calorific values were sourced from the DUKES (18) report.

- **b)** C2 = Calculated values. For categories of plant where it was not possible to obtain specific gCO\(_2\)/kWh values from the same sources as the efficiency, the gCO\(_2\)/kWh values have been calculated based on the efficiency range of the plant, using standard IPCC (source 19) factors for CO\(_2\) emissions and the following equation:

\[
g\text{CO}_2 \text{kWh} = (3.6/\text{Efficiency as decimal})/1000^*\text{fuel factor} (\text{in kgCO}_2/\text{TJ}).
\]

For example, the gCO\(_2\)/kWh for a 33% efficiency boiler firing lignite is calculated as follows:

\[
g\text{CO}_2 \text{kWh} = 3.6/0.33/1000^*101000\text{kgCO}_2/\text{TJ} = 1102\text{gCO}_2/\text{kWh}.
\]

- **c)** Ranges presented for coal are predominantly due to variation in coal type (where stated); coals with a higher moisture content and lower volatile matter content will typically emit more CO\(_2\) per unit energy generated i.e., plant operating with lower quality coals such as lignite/brown coal will typically have lower efficiencies and higher CO\(_2\) emissions than a like-for-like plant firing better quality bituminous coals.

- **d)** Where there are more than two references for a range of values, the references for the highest and lowest values in the range have been presented in **bold**. Where the range is a result of a C1 or C2 calculation this is also presented in **bold**.

- **e)** Ultra-supercritical, supercritical and subcritical technologies are defined by their pressure and temperature. Refer to Table A-1, Annex A for a summary.

- **f)** NDA = No data available, i.e., at the time of writing no publicly available, referenceable literature was found for that specific category of plant technology, fuel, size or efficiency basis. This is not intended to preclude consideration of these options and simply indicates where robust source information was not available.

- **g)** It is important to note that the values in this table have been obtained from a range of sources and it may not be appropriate to compare between them, e.g., comparing gross values with net values for the same technology/fuel. Additionally, in some cases professional judgement has been has been employed when selecting sources. This underlines the fact that this table includes ‘typical’ values, not benchmarks, as individual values are dependent on a number of project-specific factors that may not be directly comparable. Users of this table are encouraged to refer directly to the sources for further information on the specific values presented and to undertake their own assessments.
35. Combustion facilities using once-through cooling systems require large quantities of water which are discharged back to receiving surface water with elevated temperature. Water is also required for boiler makeup, auxiliary station equipment, ash handling, and FGD systems.31 The withdrawal of such large quantities of water has the potential to compete with other important water uses such as agricultural irrigation, drinking water sources or maintaining other ecosystems services.32 Withdrawal and discharge with elevated temperature and chemical contaminants such as biocides or other additives, if used, may affect aquatic organisms, including phytoplankton, zooplankton, fish, crustaceans, shellfish, and many other forms of aquatic life. Aquatic organisms drawn into cooling water intake structures are either impinged on components of the cooling water intake structure or entrained in the cooling water system itself. In the case of either impingement or entrainment, aquatic organisms may be killed or subjected to significant harm. In some cases (e.g., sea turtles), organisms are entrapped in the intake canals. There may be special concerns about the potential impacts of cooling water intake structures located in or near habitat areas that support threatened, endangered, or other protected species or where local fishery is active.

36. Conventional intake structures include traveling screens with relative high through-screen velocities and no fish handling or return system.33 Measures to prevent, minimize, and control environmental impacts associated with water withdrawal should be established based on the results of a project EA, considering the availability and use of water resources locally and the ecological characteristics of the project affected area. Recommended management measures to prevent or control impacts to water resources and aquatic habitats include:34

- Conserving water resources, particularly in areas with limited water resources, by:
 - Use of a closed-cycle, recirculating cooling water system (e.g., natural or forced draft cooling tower), or closed circuit dry cooling system (e.g., air cooled condensers) if necessary to prevent unacceptable adverse impacts.35 Cooling ponds or cooling towers are the primary technologies for a recirculating cooling water

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Capture technology & Coal & & Natural gas & \\
\hline
 & Post-combustion & Pre-combustion (IGCC) & Oxy-combustion & \\
\hline
Net efficiency with capture (LHV,\%) & 30.9 & 33.1 & 31.9 & 48.4 \\
Net efficiency penalty (LHV,\%) & 10.5 & 7.5 & 9.6 & 8.3 \\
Net efficiency penalty relative to 'without capture' alternative & 25\% & 20\% & 23\% & 15\% \\
\hline
\end{tabular}
\caption{Table 4(B) – Efficiency penalty for different carbon capture technologies with CCS}
\end{table}

31 The availability of water and impact of water use may affect the choice of FGD system used (i.e., wet vs. semi-dry).
32 For example, maintaining the quantity, frequency, timing, and quality of water and sediment flows necessary to sustain downstream freshwater and estuarine ecosystems and the human livelihoods and well-being that depend on them.
33 The velocity generally considered suitable for the management of debris is 1 fps [0.30 m/s] with wide mesh screens; a standard mesh for power plants of 3/8 in (9.5 mm).
34 For additional information, refer to Schimmoller (2004) and USEPA (2001).
35 Wet-recirculating or closed looped systems reuse cooling water in a second cycle rather than immediately discharging it back to the original water source. Most commonly, wet-recirculating systems use cooling towers to expose water to ambient air. Some of the water evaporates; the
system. Once-through cooling water systems may be acceptable if compatible with the hydrology and ecology of the water source and the receiving water and may be the preferred or feasible alternative for certain pollution control technologies such as seawater scrubbers.

- Use of dry scrubbers in situations where these controls are also required or recycling of wastewater in coal-fired plants for use as FGD makeup.
- Use of air-cooled systems.

- Reduction of maximum through-screen design intake velocity to 0.5 ft/s (0.15 m/s).
- Reduction of intake flow to the following levels including an allowance for altered water requirements and water availability due to climate change:
 - For freshwater rivers or streams to an eflow sufficient to maintain resource use (i.e., irrigation and fisheries) as well as biodiversity during annual mean low flow conditions.\(^{36}\)
 - For lakes or reservoirs, intake flow must not disrupt the thermal stratification or turnover pattern of the source water.
 - For estuaries or tidal rivers, reduction of intake flow to one percent of the tidal excursion volume.

- If there are threatened, endangered, or other protected species or if there are fisheries within the hydraulic zone of influence of the intake, reduction of impingement and entrainment of fish and shellfish by the installation of technologies such as barrier nets (seasonal or year-round), fish handling and return systems, fine mesh screens, wedgewire screens, and aquatic filter barrier systems. Examples of operational measures to reduce impingement and entrainment include seasonal shutdowns, if necessary, or reductions in flow or continuous use of screens. Designing the location of the intake structure in a different direction or further out into the water body may also reduce impingement and entrainment.

Effluents

37. Effluents from thermal power plants include thermal discharges, wastewater effluents, and sanitary wastewater.

Thermal Discharges

38. As noted above, thermal power plants with steam power generators and once-through cooling systems use significant volumes of cooling water for condensing steam turbine exhaust and cooling auxiliary equipment. The rest is then sent back to the condenser in the power plant. Because wet-recirculating systems only withdraw water to replace any water that is lost through evaporation in the cooling tower and discharged to maintain adequate cooling water quality, these systems have much lower water withdrawals than once-through systems, but tend to have higher overall water consumption due to the loss of evaporated water. Wet closed systems, as a retrofit technology, will more broadly affect a facility's operation and may trigger other environmental effects that may require mitigation of their own. These effects may be more pronounced at an aging facility that is less efficient and more susceptible to process changes.\(^{36}\) Stream flow requirements may be based on mean annual flow or mean low flow. Regulatory requirements may be 5% or higher for mean annual flows and 10% to 25% for mean low flows. Their applicability should be verified on a site-specific basis taking into consideration resource use and biodiversity requirements.
heated cooling water is normally returned to the source water (i.e., river, lake, estuary or the ocean) or the nearest surface water body.

39. Due to the biological sensitivity of many aquatic organisms to water temperature, temperature increases caused by power plant discharges may have multiple impacts on aquatic ecosystems. The effects of thermal discharges on the water environment can be sub-divided into direct effects (those organisms directly affected by changes in the temperature regime) and indirect effects (those arising in the ecosystem as a result of the changes in the organisms directly affected).

40. The direct effects of thermal discharges on the water environment include: change to the temperature regime of the water column and, in some cases, the sediment; lethal (temperatures above the critical thermal maximum create uninhabitable conditions) and sub-lethal (inhibited biological processes and stress) responses of water body organisms to the change in temperature regime; stimulation in productivity in a range of organisms resulting in increased respiration rates; reduction in the dissolved oxygen. The indirect effects of thermal discharges on the water environment include: changes in the distribution, composition and growth rates of communities of water body organisms including fish and macroinvertebrates; impacts on the distribution of bird populations reliant on these organisms; and altered nutrient and carbon cycling.

41. In general, thermal discharge should be designed to ensure that discharge water temperature does not result in exceeding relevant ambient water temperature standards outside a scientifically established mixing zone. The mixing zone is typically defined as the zone where initial dilution of a discharge takes place within which relevant water quality temperature standards are allowed to exceed and takes into account cumulative impact of seasonal variations, ambient water quality, receiving water use, potential receptors and assimilative capacity among other considerations. Establishment of such a mixing zone is project specific and may be established by local regulatory agencies and confirmed or updated through the project’s EA process. Thermal discharges should be designed to prevent negative impacts to the receiving water taking into account the following criteria:

- The elevated temperature region caused by thermal discharge from the project should not impair the integrity of the water body as a whole or endanger sensitive areas (such as recreational areas, breeding

40 A mixing zone is an established area where water quality standards can be exceeded as long as acutely toxic conditions are prevented and all beneficial uses, such as drinking water, fish habitat, recreation and other uses are protected. The mixing zone concept is widely used in the US, the EU and other parts of the world. Mixing zone boundaries are usually determined through a mass-balance or mathematical modelling approach. Mass-balance calculations essentially involve defining the effective volume of the receiving water and calculating the amount of a substance that can be discharged into that volume to achieve a desired concentration. Mixing zones may be spherical or elongated, turbulent or calm, stratified or diffuse depending on the specific characteristics of the effluent and the receiving water bodies. For confined waters (e.g., water bodies with narrow channels or low flow), in some countries a limit is placed upon the proportion of the channel width occupied by the mixing zone. For example, in the UK, it is recommended that the mixing zone should not occupy more than 25% of the cross-sectional area of the estuarine channel for the annual 98th percentile (i.e., it may be exceeded for no more than 2% of the time).
grounds, or areas with sensitive biota);

- There should be no lethality or significant impact to breeding and feeding habits of organisms passing through the elevated temperature areas; and
- There should be no significant risk to human health or the environment due to the elevated temperature or residual levels of water treatment chemicals.

42. Continuous thermal discharges to semi-enclosed bodies of water such as estuaries can result in a net increase in temperature of the water column.\(^{41,42}\) When planning thermal discharges into the receiving water body, appropriate assessment of the dispersion, dilution and cooling of the effluent is important both in terms of environmental and engineering considerations. It is important to ensure the risk of heated water recirculation (whereby elevated temperature discharge is withdrawn by the intake) is prevented.

43. If a once-through cooling system is used for large projects (i.e., a plant with > 500MWth steam generating capacity), impacts of thermal discharges should be evaluated in the EA with a mathematical or physical hydrodynamic plume model, which can be a relatively effective method for evaluating a thermal discharge to find the maximum discharge temperatures and flow rates that would meet the environmental objectives of the receiving water.\(^{43}\) Recommendations to prevent, minimize, and control thermal discharges include:

- Use of multi-port diffusers;
- Adjustment of the discharge temperature, flow, outfall location, and outfall design to minimize impacts to acceptable level (i.e., extend length of discharge channel before reaching the surface water body for pre-cooling or change location of discharge point to minimize the elevated temperature areas); and
- Use of a closed-cycle, recirculating cooling water system as described above (e.g., natural or forced draft cooling tower), or closed circuit dry cooling system (e.g., air cooled condensers) if necessary to prevent unacceptable adverse impacts.

44. Where thermal and waste waters both discharge into a receiving water body for a site or development area,\(^{44}\) it is important to ensure that the dispersion modelling techniques applied would be able to represent the different buoyancy from the given effluent discharge locations. Additionally, and as relevant, influences such as temperature,

\(^{42}\) The rate of mixing of the discharge plume with the water column will determine the rate at which heat is dissipated. Discharges to estuaries are most likely to have reduced mixing potential, with heated effluent concentrated in a body of water that moves up and down the estuary with the ebb and flow of the tide. This can be exacerbated by stratification where heated effluents can be entrained in distinct layers in the water column. The heated effluent may reinforce stratification as the heated buoyant effluent is entrained in surface layers, increasing the temperature differential between the layers above and below the thermocline. In some situations, for example integrated power and desalination plants (Wood et al., 2010) and plants with cooling systems that utilize certain compounds to keep heat exchange surfaces clean, cooling-water discharges are of greater salinity than the receiving environment and become entrained in the lower layers of the water column.

\(^{43}\) An example model is CORMIX (Cornell Mixing Zone Expert System) hydrodynamic mixing zone computer simulation, which has been developed by the U.S. Environmental Protection Agency. This model emphasizes predicting the site- and discharge-specific geometry and dilution characteristics to assess the environmental effects of a proposed discharge. Other models, such as Delft3D and Mike 21, are also used in many countries.

\(^{44}\) A receiving water body could be a river, ocean, stream or other watercourse into which wastewater of treated effluent and the run-off from a site or a development area are discharged.
sunlight, tide, surge, current, wind speed and direction and waves, should be adequately considered as part of the
detailed assessment as they can influence water quality. Credible worst-case conditions/scenarios should be taken
into account when undertaking water quality and environmental impact assessment.

45. If a closed wet cooling system is used, the need for thermal discharge and effluent dilution modelling should be
evaluated and decided by the EA process.

46. Climate change may result in increased thermal discharges back to the source, where water temperatures
are already elevated. This may result in shut down of plant and therefore assumptions on discharge volumes should
be assessed in the context of climate change; technologies that can reduce this risk should be considered, for
example using alternative cooling systems such as wet closed cooling systems or air cooled condensers.
Additionally, climate change could alter the thermal profile of some receiving waters. Where appropriate, water
quality models should take these potential changes into account by increasing the background water temperature
and air temperature to reflect the influence of climate change.

Liquid Waste

47. Wastewater streams in thermal power plants include cooling tower blowdown; ash handling wastewater; wet
FGD system discharges; material storage runoff; metal cleaning wastewater; and low-volume wastewater, such as
air heater and precipitator wash water, boiler blowdown, boiler chemical cleaning waste, floor and yard drains and
sumps, laboratory wastes, potentially contaminated rainwater and backflush from reverse osmosis (RO) and ion
exchange boiler water purification units. All of these wastewaters are usually present in plants burning coal or
biomass; some of these streams (e.g., ash handling wastewater) may be present in reduced quantities or may not
be present at all in oil-fired or gas-fired power plants. As well as fuel type, wastewater streams present will depend
on the technology employed (for example whether steam-based, simple or combined cycle combustion turbine or
reciprocating engine) and, where applicable, the cooling technology employed. The characteristics of the
wastewaters generated depend on the ways in which the water has been used and how the surface water is
collected and drained. Contamination arises from demineralizers; lubricating and auxiliary fuel oils; trace
contaminants in the fuel (introduced through the ash-handling wastewater and wet FGD system discharges); and
chlorine, biocides, and other chemicals used to manage the quality of water in cooling systems. Cooling tower
blowdown tends to be very high in total dissolved solids but is generally classified as non-contact cooling water and,
as such, is typically subject to limits for pH, residual chlorine, and toxic chemicals that may be present in

45 Climate change could lead to an increase in water temperature and air temperature, which may increase the temperature of the discharge. Additionally, more water is likely to be needed to achieve the same cooling effect. Consequently, this will result in increased thermal discharge back to the source.

46 For example CORMIX, Delft 3D, Mike 21.

47 Water cooling is commonly used for cooling industrial facilities such as steam electric power plants. This water does not come into contact with raw materials, products, or other wastes and when used solely for the purpose of removing heat, is known as ‘non-contact cooling water’.
cooling tower additives (including corrosion inhibiting chemicals containing chromium and zinc whose use should be eliminated). Effluent guidelines are provided in Table 5 of Section 2.0.

48. Recommended water treatment and wastewater conservation methods are discussed in Sections 1.3 and 1.4, respectively, of the General EHS Guidelines. In addition, recommended measures to prevent, minimize, and control wastewater effluents from thermal power plants include:

- Recycling of wastewater in coal-fired plants for use as FGD makeup. This practice conserves water and reduces the number of wastewater streams requiring treatment and discharge;\(^{48}\)
- In coal-fired power plants without FGD systems, treatment of process wastewater in conventional physical-chemical treatment systems for pH adjustment and removal of total suspended solids (TSS), and oil / grease, at a minimum. Depending on local regulations, these treatment systems can also be used to remove most heavy metals to part-per-billion (ppb) levels by chemical precipitation\(^{49}\)—as either metal hydroxide or metal organosulfide compounds;
- Collection of fly ash in dry form and bottom ash in drag chain conveyor systems in new coal-fired power plants;
- Consider use of soot blowers\(^{50}\) or other dry methods to remove fireside wastes from heat transfer surfaces so as to minimize the frequency and amount of water used in fireside washes;
- Use of infiltration and runoff control measures such as compacted soils, protective liners, and sedimentation controls for runoff from coal piles;
- Spraying of coal piles with anionic detergents to inhibit bacterial growth and minimize acidity of leachate;\(^{51}\)
- Use of SO\(_X\) removal systems that generate less wastewater, if feasible; however, the environmental and cost characteristics of both inputs and wastes should be assessed on a case-by-case basis;
- Treatment of low-volume wastewater streams that are typically collected in the boiler and turbine room sumps in conventional oil-water separators before discharge;
- Treatment of acidic low-volume wastewater streams, such as those associated with the regeneration of makeup demineralizer and deep-bed condensate polishing systems, by chemical neutralization in-situ before discharge;

\(^{48}\) Suitable wastewater streams for reuse include gypsum wash water, which is a different wastewater stream than the FGD wastewater. In plants that produce marketable gypsum, the gypsum is rinsed to remove chloride and other undesirable trace elements.

\(^{49}\) For example heavy metal removal is widely undertaken in the US and European Union where permits for thermal power plants include effluent limits for metals. The application of a waste water treatment plant employing physical / chemical treatment to remove heavy metals is considered BAT (Best Available Technique) for large combustion plants in Europe (EC, 2016) in order to comply with the waste water discharge limits under the Industrial Emissions Directive (IED). In November 2015, the US EPA revised the Steam Electric Power Generating Effluent Guidelines (US EPA, 2015) to regulate discharges of heavy metals, reflecting the impact of changing technologies on the composition of wastewater streams since the regulations were last amended in 1982. US EPA guidance also recommends physical / chemical precipitation to remove heavy metals to permitted discharge levels (US EPA, 2009).

\(^{50}\) Deposits dislodged by sootblowing operations will either fall into the boiler ash hoppers or be entrained in the flue gases and captured in the particulate control device at the main stack.

\(^{51}\) If coal pile runoff will be used as makeup to the FGD system, anionic detergents may increase or create foaming within the scrubber system. Therefore, use of anionic surfactants on coal piles should be evaluated on a case-by-case basis.
• Pretreatment of cooling tower makeup water, installation of automated bleed/feed controllers, and use of inert construction materials to reduce chemical treatment requirements for cooling towers;
• Elimination of metals such as chromium and zinc from chemical additives used to control scaling and corrosion in cooling towers; and
• Use the minimum required quantities of chlorinated biocides in place of brominated biocides or alternatively apply intermittent shock dosing of chlorine as opposed to continuous low-level feed.

Sanitary Wastewater

49. Sewage and other wastewater generated from washrooms, etc. are similar to domestic wastewater. Impacts and management of sanitary wastewater is addressed in Section 1.3 of the General EHS Guidelines.

Solid Waste

50. Coal-fired and biomass-fired thermal power plants generate the greatest amount of solid wastes due to the relatively high percentage of ash in the fuel. Solid wastes are fly ash, bottom ash, boiler slag, FGD sludge (although biomass contains less sulfur than coal and therefore FGD may not be necessary when using biomass), coal mill rejects/pyrites (depending on the fuel used), cooling tower sludge, wastewater treatment sludge and water treatment sludge.

51. Fluidized-bed combustion (FBC) boilers, gasifiers and pyrolysers generate fly ash and bottom ash, which is called bed ash. Fly ash removed from exhaust gases makes up 60–85 percent of the coal ash residue in pulverized-coal boilers and 20 percent in stoker boilers. Bottom ash includes slag and particles that are coarser and heavier than fly ash. Due to the presence of sorbent material, FBC wastes have a higher content of calcium and sulfate and a lower content of silica and alumina than conventional solid fuel wastes. Post-combustion dry and semi-dry scrubbing wastes or air-pollution control residues (APCR) also have a higher content of calcium and sulfate.

52. Oil combustion wastes include fly ash and bottom ash and are normally only generated in significant quantities when residual fuel oil is burned in oil-fired steam boilers. Other technologies (e.g., combustion turbines and diesel engines) and fuels (e.g., distillate oil and HFO) generate little or no solid wastes, although pre-treatment of HFO can generate significant quantities of sludge. Overall, oil combustion wastes are generated in much smaller quantities than the solid fuel combustion wastes discussed above. Gas-fired thermal power plants generate essentially no solid waste because of the negligible ash content, regardless of the combustion technology.

52 For example, a 500MW e plant using coal with 2.5% sulfur (S), 16% ash, and 30,000 kilojoules per kilogram (kJ/kg) heat content will generate about 500 tons of solid waste per day.
53. Metals are constituents of concern in solid wastes. For example, ash residues, particulates removed from exhaust gases and HFO sludge may contain significant levels of heavy metals and some organic compounds, in addition to inert materials.

54. Ash residues are not typically classified as a hazardous waste due to their inert nature. However, where ash residues are expected to contain potentially significant levels of heavy metals, radioactivity, or other potentially hazardous materials (such as polycyclic aromatic hydrocarbons (PAH) or crystalline silica), they should be tested at the start of plant operations to verify their classification as hazardous or non-hazardous according to local regulations or internationally recognized standards. Additional information about the classification and management of hazardous and non-hazardous wastes is presented in Section 1.6 of the General EHS Guidelines.

55. Recommended measures to prevent, minimize, and control the volume of solid wastes from thermal power plants include:

- Dry handling of solid wastes, in particular fly ash. Dry handling methods do not involve surface impoundments and, therefore, do not present the ecological risks identified for impoundments (e.g., metal uptake by wildlife). Potential hazards associated with levels of, for example, pH or leachability will need to be considered and managed. Further, if there are risks of particulates from the fly ash, damping systems may be required from a safety and environmental impact perspective;

- Recycling of solid wastes in uses such as cement and other concrete products, construction fills (including structural fill, flowable fill, and road base), agricultural uses such as calcium or phosphorous fertilizers (provided trace metals or other potentially hazardous materials levels are within accepted thresholds), waste management applications, mining applications, construction materials (e.g., synthetic gypsum for plasterboard), and incorporation into other products provided the residues (such as trace metals and radioactivity) are not considered hazardous. Ensuring consistent quality of fuels and additives helps to ensure the solid wastes can be recycled;

- If beneficial reuse is not feasible, disposal of solid wastes in permitted landfills (sited to minimize contact with water during normal and abnormal weather events) with environmental controls such as run-on/run-off controls, liners, leachate collection systems, ground-water monitoring, closure controls, daily (or other operational) cover, and fugitive PM controls is recommended;

- Dry collection of bottom ash and fly ash, or wet collection incorporating a settling stage, from power plants combusting heavy fuel oil if containing high levels of economically valuable metals such as vanadium and

53 Some countries may categorize fly ash as hazardous due to the presence of arsenic or radioactivity, precluding its use as a construction material. In addition, flue gas cleaning residues (APCR) and FBC residues can contain high levels of unreacted lime resulting in very high pH, and thus may be classified as hazardous.

55 For example, the US EPA (SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods) or European Commission Regulation (EC) No. 1272/2008 (Annex I: Classification and labelling requirements for hazardous substances and mixtures)

recycle for vanadium recovery (where economically viable) or disposal in a permitted landfill with environmental controls;

- Management of ash disposal and reclamation so as to minimize environmental impacts—especially the migration of toxic metals, if present, to nearby surface and groundwater bodies, in addition to the transport of suspended solids in surface runoff due to seasonal precipitation and flooding, which may be made worse by climate change impacts. In particular, construction, operation, and maintenance of surface impoundments should be conducted in accordance with internationally recognized standards;57,58

- Reuse of sludge from treatment of waste waters from FGD plants. This sludge may be re-used in the FGD plant due to the calcium components. It can also be used as an additive in coal-fired plant combustion to improve the ash melting behavior; and

- HFO sludge is typically similar in general composition to the HFO used. Where HFO sludge is expected to contain potentially significant levels of hazardous materials, it should be tested at the start of plant operations and classified as hazardous or non-hazardous according to local regulations or internationally accepted approaches. If non-hazardous, HFO sludge may be incinerated on site; Detailed guidance on the storage, handling, treatment, and disposal of hazardous wastes is provided in the General EHS Guidelines.

Hazardous Materials and Oil

56. Hazardous materials stored and used at combustion facilities include solid, liquid, and gaseous fuels; air, water, and wastewater treatment chemicals; and equipment and facility maintenance chemicals (e.g., paint, certain types of lubricants, and cleaners). Major accident and spill prevention and response guidance is addressed in Sections 1.5 and 3.7 of the General EHS Guidelines.

57. In addition, measures should be taken to prevent, minimize, and control hazards associated with the unloading, storage and handling of hazardous materials at thermal power plants. Examples of specific hazard control measures may include:59

- The use of double-walled, underground pressurized tanks for storage of pure liquefied ammonia (e.g., for use as reagent for SCR); and

- The use of enclosed conveyors, pneumatic transfer systems and silos with suitable extraction and filtration equipment to prevent the emission of PM from handling lime and limestone.

57 See, for example, U.S. Department of Labor, Mine Safety and Health Administration regulations at 30 CFR §§ 77.214 - 77.216.

58 Additional detailed guidance applicable to the prevention and control of impacts to soil and water resources from non-hazardous and hazardous solid waste disposal is presented in the EHS Guidelines for Waste Management Facilities.

59 Final Draft LCP BREF note (EC, 2016).
58. Specific measures are also recommended related to the handling of gaseous, liquid and solid fuels:

- **Gaseous fuels**: use fuel gas leak detection systems and alarms with remote operated emergency isolation valves to prevent fugitive emissions of gaseous fuels.

- **Liquid fuels**: to prevent water contamination, storage systems should have appropriate secondary containment as discussed in the **General EHS Guidelines** and procedures for the management of containment systems. The bund depth should make an allowance for rain and fire water and/or foam.\(^6^0\)

 Tanks should have a gauging system and a high level alarm independent of the gauging system. Pipelines should be situated in safe open areas above ground to assist with leak detection and prevent damage from vehicles and other equipment (or use double-walled pipes with locations clearly documented and marked if underground). A tertiary containment system should be provided to collect and treat surface run-off water that may have been contaminated through spillage during storage and handling.

- **Solid fuels**: to prevent dust releases, minimize the height of fuel drop to the stockpile using appropriate loading and unloading equipment. Water dust suppression should be used on coal stockpiles, cover stockpiles and where appropriate use belt conveyors to transport fuel to storage areas. To prevent water contamination, ensure storage areas are located on sealed surfaces with adequate drainage and water treatment of surface run-off. Biomass can potentially ferment and release carbon monoxide and other gases; biomass should be stored in dry conditions with temperature and carbon monoxide monitoring provided. Biomass dusts can give rise to dust explosions and some wood dusts are toxic; care should be taken to minimize dust releases.\(^6^1\)

Noise

59. Principal sources of noise in thermal power plants include the turbine generators and auxiliaries; boilers and auxiliaries, such as coal pulverizers; reciprocating engines; fans and ductwork; pumps; compressors; condensers; precipitators, including rappers and plate vibrators; piping and valves; motors; transformers; circuit breakers; and cooling towers. Thermal power plants used for base load operation may operate continually while smaller plants may operate less frequently but still pose a significant source of noise if located in urban areas.

60. Noise impacts, control measures, and recommended ambient noise levels are presented in Section 1.7 of the **General EHS Guidelines**. Additional recommended measures to prevent, minimize, and control noise from thermal power plants include:

- Siting new facilities with consideration of distances from the noise sources to the receptors (e.g., residential receptors, schools, hospitals, religious places) to the extent possible. If the local land use is not controlled through zoning or is not effectively enforced, examine whether residential receptors could come outside the

\(^{60}\) Detailed guidance on bund and tertiary containment design and construction is given in CIRIA C736 (2014).

acquired plant boundary. In some cases, it could be more cost effective to acquire additional land as buffer zone than relying on technical noise control measures, where possible;

- Use of noise control techniques such as: using acoustic machine enclosures; selecting structures according to their noise isolation effect to envelop the building; using mufflers or silencers in intake and exhaust channels; using sound-absorptive materials in walls and ceilings; using vibration isolators and flexible connections (e.g., helical steel springs and rubber elements); applying a carefully detailed design to prevent possible noise leakage through openings or to minimize pressure variations in piping; and

- Modification of the plant configuration or use of noise barriers such as berms and vegetation to limit ambient noise at plant property lines, especially where sensitive noise receptors may be present.

61. Noise propagation models62 may be effective tools to help evaluate noise management options such as alternative plant locations, general arrangement of the plant and auxiliary equipment, building enclosure design, and, together with the results of a baseline noise assessment, expected attainment of applicable community noise level guidelines.

1.2 Occupational Health and Safety

62. Occupational health and safety risks and mitigation measures during construction, operation, and decommissioning of thermal power plants are similar to those at other large industrial facilities, and are addressed in Section 2.0 of the \textbf{General EHS Guidelines}. In addition, the health and safety impacts arising from the following are of particular concern during operation of thermal power plants:

- Non-ionizing radiation;
- Heat;
- Noise;
- Confined spaces;
- Electrical hazards;
- Fire and explosion hazards;
- Chemical hazards; and
- Particulate matter.

\textbf{Non-Ionizing Radiation}

63. Combustion facility workers may have a higher exposure to electric and magnetic fields (EMF) than the general public due to working in proximity to electric power generators, equipment (including magnetic separators for solid fuels), and connecting high-voltage transmission lines. High-voltage overhead power lines typically contribute the

greatest electric field impacts at a thermal power plant site, as most other potential sources on site are shielded by metallic coatings and earthed, which isolates the electric field almost totally.63

64. Occupational EMF exposure should be prevented or minimized through the preparation and implementation of an EMF safety program including the following components:

- Identification of potential exposure levels in the workplace, including surveys of exposure levels in new projects;
- Training of workers in the identification of occupational EMF levels and hazards;
- Establishment and identification of safety zones to differentiate between work areas with expected elevated EMF levels compared to those acceptable for public exposure, limiting access to properly trained workers;
- Implementation of action plans to address potential or confirmed exposure levels that exceed reference occupational exposure levels.64 Action plans to address occupational exposure may include increasing the distance between the source and the worker, when feasible, or the use of shielding materials.

Heat

65. Occupational exposure to heat occurs during operation and maintenance of combustion units, pipes, and related hot equipment. Recommended prevention and control measures to address heat exposure at thermal power plants include:

- Regular inspection and maintenance of pressure vessels and piping;
- Provision of adequate ventilation in work areas to reduce heat and humidity;
- Reducing the time required for work in elevated temperature environments and ensuring access to drinking water;
- Insulating and shielding surfaces where workers come in close contact with hot equipment, such as combustion units, generators and pipes; and
- Use of warning signs near high temperature surfaces and personal protective equipment (PPE) as appropriate, including insulated gloves and shoes.

Noise

66. Noise sources in combustion facilities include the turbine generators and auxiliaries; boilers and auxiliaries, such as pulverizers; diesel engines; fans and ductwork; pumps; compressors; condensers; precipitators, including rappers and plate vibrators; piping and valves; motors; transformers; circuit breakers; and cooling towers. Recommendations for reducing noise and vibration externally are discussed in Section 1.1, above. In addition to potential for hearing damage, specific locations where speech communication is important, or where audible

63 IEC, 2011.

64 Exposure guidelines for Occupational Exposure are listed in Section 2.2 of this Guideline.
warnings and information announcements need to be heard should be considered. Occupational noise exposure management guidance, including noise limits, is provided in Section 2.3 of the General EHS Guidelines.

Confined Spaces

67. Specific areas for confined space entry may include solid fuel ash containers, turbines, condensers, and cooling water towers (during maintenance activities). Recommend confined space entry procedures are discussed in Section 2.8 of the General EHS Guidelines.

68. During storage most types of biomass off-gas i.e., biomass emits different types of gas including CO, CO₂ and CH₄ as well as volatile organic compounds (such as aldehydes and ketones). CO, CO₂ and CH₄ will result in O₂ depletion and can be poisonous; therefore, well ventilated storage of biomass needs to be considered. Emission of aldehydes is a health issue; certain aldehydes cause skin and upper airways irritation.

Electrical Hazards

69. Energized equipment and power lines can pose electrical hazards for workers at thermal power plants. Electrical hazards management guidance is provided in Section 2.3 of the General EHS Guidelines. Recommended measures to prevent, minimize, and control electrical hazards at thermal power plants include:

- Consider installation of hazard warning lights inside electrical equipment enclosures to warn of inadvertent energization;
- Use of voltage sensors prior to and during workers’ entrance into enclosures containing electrical components;
- Deactivation and proper grounding of live power equipment and distribution lines whenever possible before work is performed on or proximal to them; and
- Provision of specialized electrical safety training to those workers working with or around exposed components of electric circuits. This training should include, but not be limited to, training in basic electrical theory, proper safe work procedures, hazard awareness and identification, proper use of PPE, proper lockout/tagout procedures, first aid including CPR, and proper rescue procedures. Provisions should be made for periodic retraining as necessary.

Fire and Explosion Hazards

70. Thermal power plants store, transfer, and use large quantities of fuels; therefore, careful handling is necessary to mitigate fire and explosion risks. In particular, fire and explosion hazards increase as the particle size of solid fuel is reduced. Particle sizes of solid fuel that can fuel a propagating explosion occur within thermal dryers, cyclones, baghouses, pulverized-fuel systems, grinding mills, and other process or conveyance equipment. Fire and
explosion prevention management guidance is provided in Section 2.1 and 2.4 of the General EHS Guidelines. Recommended measures to prevent, minimize, and control physical hazards at thermal power plants include:

- Use of automated combustion and safety controls;
- Proper maintenance of boiler safety controls;
- Implementation of startup and shutdown procedures to minimize the risk of suspending hot coal particles (e.g., in the pulverizer, mill, and cyclone) during startup;
- Regular cleaning of the facility to prevent accumulation of solid fuel PM (e.g., on floors, ledges, beams, and equipment);
- Removal of hot spots from the coal stockpile (caused by spontaneous combustion) and spread until cooled, never loading hot coal into the pulverized fuel system; and
- Use of automated systems such as temperature gauges or carbon monoxide sensors to survey solid fuel storage areas to detect fires caused by self-ignition and to identify risk points.

Chemical Hazards

71. Thermal power plants utilize hazardous materials, including ammonia for NOX control systems, and chlorine gas for treatment of cooling tower and boiler water. Guidance on chemical hazards management is provided in Section 2.4 of the General EHS Guidelines. Additional, recommended measures to prevent, minimize, and control physical hazards at thermal power plants include:

- Consider generation of ammonia on site from urea or use of aqueous ammonia in place of pure liquefied ammonia.
- Consider use of sodium hypochlorite in place of gaseous chlorine.

Particulate Matter (PM)

72. PM is generated in handing solid fuels, additives, and SFCW (e.g., ash). PM may contain silica (associated with silicosis), arsenic (skin and lung cancer), coal dust (black lung), biomass dust (asthma and cancer) and other potentially harmful substances. PM management guidance is provided in the Section 2.1 and 2.4 of the General EHS Guidelines. Recommended measures to prevent, minimize, and control occupational exposure to PM in thermal power plants include:

- Use of PM controls (e.g., exhaust ventilation) to keep PM below applicable guidelines (see Section 2) or wherever free silica levels in airborne PM exceed 1 percent; and
- Regular inspection and maintenance of asbestos containing materials (e.g., insulation in older plants may contain asbestos) to prevent airborne asbestos particles.
1.3 Community Health and Safety

73. Many community health and safety impacts during the construction, operation, and decommissioning of thermal power plant projects are common to those of most infrastructure and industrial facilities and are discussed in Section 3.0 the General EHS Guidelines. In addition to these and other aspects covered in Section 1.1, the following community health and safety impacts may be of particular concern for thermal power plant projects:

- Water Consumption; and
- Traffic Safety.

74. Potential risks and impacts of accidental discharges due to extreme conditions (e.g., earthquakes or system failure) should be assessed as part of the EA process. Developers should establish emergency response plans to ensure effective management of residual risks as necessary.

75. In addition, visible plumes from thermal power plant stacks can be of concern to local communities and therefore may require assessment and explanation during stakeholder consultations.

Water Consumption

76. Power plants may use a range of cooling methods depending on the availability of water. The potential effects of water use should be assessed, as discussed in Section 3.1 of the General EHS Guidelines, to ensure that the project does not compromise the availability of water for personal hygiene, agriculture, recreation, and other community needs.

Traffic Safety

77. Operation of a thermal power plant will increase traffic volume, in particular for facilities with fuels transported via land and sea, including heavy trucks carrying fuel, additives, etc. The increased traffic can be especially significant in sparsely populate areas where some thermal power plants are located. Prevention and control of traffic-related injuries are discussed in Section 3.4 of the General EHS Guidelines. Water transport safety is covered in the EHS Guidelines for Shipping.

65 See sections on “Energy Efficiency and GHG Emissions” (cooling technologies will impact the efficiency of the plant) and “Water Consumption and Aquatic Habitat Alteration”: Traditionally, most power plants have used evaporative cooling towers where sufficient water supplies are available. In these systems, the cooling circuit accounts for about 98 percent of the site process water usage, which in turn might be expected to be around 0.3 to 0.4kg/sec for each MW(th) of plant thermal input. Alternatively, subject to environmentally acceptable temperature rises, plants near to rivers, lakes and coasts can use once-through cooling systems which have no net water usage. Where water is in short supply, the use of air-cooled condensers (ACCs) may be considered, which can cut the power plant water usage to 0.006 to 0.008kg/sec per MW(th) of plant thermal input.
2.0 Performance Indicators and Monitoring

2.1 Environment

Emissions and Effluent Guidelines

78. Effluent guidelines are described in Table 5. Emissions guidelines are described in Table 6. Effluent guidelines are applicable for direct discharges of treated effluents to surface waters for general use. Site-specific discharge levels may be established based on the availability and conditions in the use of publicly operated sewage collection and treatment systems or, if discharged directly to surface waters, on the receiving water use classification as described in the General EHS Guidelines. Guideline values for effluents in this sector are indicative of good international industry practice as reflected in standards of countries with recognized regulatory frameworks. Deviation from these levels due to specific local project conditions should be justified in the EA.

<table>
<thead>
<tr>
<th>Parameter (pollutant or pollutant property)</th>
<th>Maximum concentration (mg/L, except pH and temp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6 – 9</td>
</tr>
<tr>
<td>TSS</td>
<td>50</td>
</tr>
<tr>
<td>Oil and grease</td>
<td>10</td>
</tr>
<tr>
<td>Free available chlorine or total residual chlorine</td>
<td>0.2</td>
</tr>
<tr>
<td>Chromium - total (Cr)</td>
<td>0.2</td>
</tr>
<tr>
<td>Copper – total (Cu)</td>
<td>0.5</td>
</tr>
<tr>
<td>Iron – total (Fe)</td>
<td>1.0</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>1.0</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0.5</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>0.1</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0.005</td>
</tr>
<tr>
<td>Arsenic (As)</td>
<td>0.5</td>
</tr>
<tr>
<td>Phosphorous</td>
<td>0.5</td>
</tr>
<tr>
<td>Other corrosion inhibiting materials</td>
<td>Guideline value to be established on a case by case basis through the EA process.</td>
</tr>
</tbody>
</table>

- Temperature increase by thermal discharge from cooling system
 - The effluent should result in a temperature change of no more than 3°C at the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors, and assimilative capacity. The EA for a specific project may specify a more stringent temperature change guideline.
 - Elevated temperature areas due to discharge of once-through cooling should be minimized by adjusting intake and outfall design through the project specific EA depending on the sensitive aquatic ecosystems around the discharge point.
 - The mixing zone may be established by local regulatory agencies or through the project’s EA process. It should also be minimized as far as practicable.

Note:
- There shall be no discharge of polychlorinated biphenol compounds such as those commonly used for transformer fluid.
- Applicability of heavy metals should be determined in the EA. Guideline values in the Table are from various references of effluent performance by thermal power plants.
79. Emissions levels for the design and operation of each project should be established through the EA process in accordance with the approach set out in Section 1.1 of the General EHS Guidelines. The emissions levels selected should be justified in the EA on the basis of ambient impacts in the context of relevant ambient air quality standards.\footnote{Refer to Section 1.1 of the General EHS Guidelines for further information.} The maximum emissions levels given here can be consistently achieved by well-designed, well-operated, and well-maintained pollution control systems. In contrast, poor operating or maintenance procedures affect actual pollutant removal efficiency and may reduce it to well below the design specification. Dilution of air emissions to achieve these guidelines is unacceptable.

Environmental Monitoring

80. Emissions and ambient air quality monitoring recommendations applicable to power plants are provided in Table 7. Monitoring data should be analyzed and reviewed at regular intervals and compared with the operating standards so that any necessary corrective actions can be taken. Additional guidance on applicable sampling and analytical methods for emissions and effluents is provided in the General EHS Guidelines.
Environmental, Health, and Safety Guidelines
THERMAL POWER PLANTS
DRAFT FOR SECOND PUBLIC CONSULTATION—MAY/JUNE 2017

Table 6 (A) - Emission Guidelines (in mg/Nm³ as or as indicated) for Reciprocating Engine

<table>
<thead>
<tr>
<th>Combustion Technology / Fuel</th>
<th>Particulate Matter (PM)</th>
<th>Sulfur Dioxide (SO₂)</th>
<th>Nitrogen Oxides (NOₓ)</th>
<th>Dry Gaseous O₂ Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NDA</td>
<td>DA</td>
<td>NDA</td>
<td>DA</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>200 (Spark Ignition)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400 (Dual Fuel)</td>
</tr>
<tr>
<td>Liquid Fuels (Plant ≥500MWh to <3000MWh)</td>
<td>50 30</td>
<td>1,170 or use of 2% or less S fuel</td>
<td>0.5% S</td>
<td>1,460 (Compression Ignition, bore size diameter [mm] < 400)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,850 (Compression Ignition, bore size diameter [mm] ≥ 400)</td>
</tr>
<tr>
<td>Liquid Fuels (Plant ≥3000MWh)</td>
<td>50 30</td>
<td>565 or use of 1% or less S fuel</td>
<td>0.2% S</td>
<td>740</td>
</tr>
<tr>
<td>Biofuels / Gaseous Fuels other than Natural Gas</td>
<td>50 30</td>
<td>N/A</td>
<td>N/A</td>
<td>30% higher limits than those provided above for Natural Gas and Liquid Fuels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400 (other)</td>
</tr>
</tbody>
</table>

Notes:
- a) Compression Ignition (CI) engines may require different emissions values which should be evaluated on a case-by-case basis through the EA process in accordance with Section 1.1 of the General EHS Guidelines.

General Notes:
- MWth = Megawatt thermal input on HHV basis.
- N/A = not applicable.
- NDA = Non-degraded airshied; DA = Degraded airshied; Airshied should be considered as degraded if relevant ambient air quality standards (as defined in the General EHS Guidelines) are exceeded; NDA/ NDA to be determined for each pollutant.
- S = sulfur content (expressed as a percent by mass).
- In the event that natural gas contains elevated sulfur levels, SO₂ emissions should be no greater than those for liquid fuels.
- Nm³ is at one atmospheric pressure, 0 degree Celsius, dry gas.
- MWth category is to apply to the entire facility consisting of multiple units.
- Guideline values apply to facilities operating more than a combined total of 500 hours per year (i.e. if multiple units are present, the combined total of all operational units at the facility).
- See Section 2.1 for information on how facility performance is compared with these emission guidelines.
- PM defined as total suspended particulates, consistent with EU Industrial Emissions Directive (IED) and US New Source Performance Standards (NSPS).

Comparison of the Guideline values with standards of selected countries / region (as of January 2017):
- Natural Gas-fired Reciprocating Engine – NOₓ:
 - EU: 75mg/Nm³ (SI or dual fuel). Note BAT indicates concentrations of 20 to 75mg/Nm³.
 - US: 82ppmv (equivalent to 169mg/Nm³); conversion = concentration (ppm) x molecular weight of NOₓ (g)/molar volume at 0°C (dm³) i.e. 82ppmv x 46.07g /22.4dm³ = 169mg/Nm³.

Environmental, Health, and Safety Guidelines
THERMAL POWER PLANTS
DRAFT FOR SECOND PUBLIC CONSULTATION—MAY/JUNE 2017

Table 6 (B) - Emission Guidelines (in mg/Nm\(^3\) or as indicated) for Combustion Turbine

<table>
<thead>
<tr>
<th>Combustion Technology / Fuel</th>
<th>Particulate Matter (PM)</th>
<th>Sulfur Dioxide (SO(_2))</th>
<th>Nitrogen Oxides (NO(_x))</th>
<th>Excess Dry Gas O(_2) Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas (Unit ≥ 50MWth)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Distillate/Light Fuel Oil (Unit ≥ 50MWth)</td>
<td>50</td>
<td>30</td>
<td>Use of 1% or less S fuel</td>
<td>150 (~74ppm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Non-natural gas gaseous fuels and HFO can vary considerably in composition and emission guidelines should be assessed on a case-by-case basis to determine what can be achieved.

General notes:
- MWh = Megawatt thermal input on HHV basis.
- N/A = not applicable.
- NDA = Non-degraded airshed; DA = Degraded airshed; Airshed should be considered as degraded if relevant ambient air quality standards (as defined in the General EHS Guidelines) are exceeded; DA/NDA to be determined for each pollutant.
- S = sulfur content (expressed as a percent by mass).
- In the event that natural gas contains elevated sulfur levels, SO\(_2\) emissions should be no greater than that for liquid fuels.
- Nm\(^3\) is at one atmospheric pressure, 0 degree Celsius, dry gas.
- NO\(_x\), mg/Nm\(^3\) to ppm conversion assumes NO\(_x\) as NO.
- MWh category applies to single units.
- Guideline values apply to facilities operating more than a combined total of 500 hours per year (i.e. if multiple units are present, the combined total of all operational units at the facility).
- Guideline values should be achieved down to at least 60% turbine load. See Section 2.1 for information on how facility performance is compared with these emission guidelines.
- If supplemental firing is used in a combined cycle gas turbine mode, the relevant guideline values should be achieved including emissions from those supplemental firing units (e.g., duct burners).
- PM defined as total suspended particulates, consistent with EU IED and US NSPS.

Comparison of the Guideline values with standards of selected countries / region (as of January 2017):
- Natural Gas-fired Combustion Turbine – NO\(_x\)
 - EU: 50mg/Nm\(^3\) for simple cycle turbines with an efficiency above 35%; 50*\(\eta\) / 35 (where \(\eta\) = efficiency % at ISO conditions). Note BAT indicates concentrations of 10 to 50mg/Nm\(^3\) can be achieved using primary abatement measures only.
 - US: 25ppm (51mg/Nm\(^3\)) (>≈15MWth and ≤≈249MWth), 15ppm (31mg/Nm\(^3\)) (≈249MWth). Note NO\(_x\) limits in the range of 4 to 19mg/Nm\(^3\) are typically required through permitting system.
 - India: 50ppm (new plants, natural gas, ≥400MW), 75ppm (new plants, natural gas, >100MW but <400MW), 100ppm (new plants, natural gas, <100MW).
 - China: 50mg/Nm\(^3\)
- Liquid Fuel-fired Combustion Turbine – NO\(_x\)
 - EU: 50mg/Nm\(^3\)
 - US: 74ppm (152mg/Nm\(^3\)) (≥15MWth and ≤249MWth), 42ppm (86mg/Nm\(^3\)) (>≈249MWth)
 - India: 100ppm (new plants, naphtha)
 - China: 120mg/Nm\(^3\)
- Liquid Fuel-fired Combustion Turbine – SO\(_2\)
 - EU: S content of light fuel oil used in gas turbines below 0.1%
 - US: S content of about 0.03% (continental area) and 0.4% (non-continental area)
 - China: 100mg/Nm\(^3\)

Source:
General notes:
- Guideline values are applicable for new facilities.
- Nationally legislated limits should be applied if they are more stringent.
- EA may justify more stringent or less stringent guideline values due to environmental, community health, technical and economic considerations, whilst not exceeding nationally legislated limits.
- In all cases, the EA should demonstrate that ambient impacts from emissions are in compliance with the requirements of Section 1.1 of the General EHS Guidelines.
- For fuels other than those specified below, the EA should justify the required emission guidelines taking account of environmental, community health, technical and economic considerations.
- For projects to rehabilitate existing facilities, emission guidelines should be established by the EA considering (i) the existing emission levels and impacts on the environment and community health, and (ii) economic and technical feasibility of ensuring the existing emission levels meet the Guideline values for new facilities.
- Nationally legislated limits should be applied if they are more stringent.

Table 6 (C) - Emission Guidelines (in mg/Nm3 or as indicated) for Boiler

<table>
<thead>
<tr>
<th>Combustion Technology / Fuel</th>
<th>Particulate Matter (PM)</th>
<th>Sulfur Dioxide (SO2)</th>
<th>Nitrogen Oxides (NOx)</th>
<th>Excess Dry Gas O$_2$ Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boiler</td>
<td>NDA DA</td>
<td>NDA DA</td>
<td>NDA DA</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>N/A N/A</td>
<td>200</td>
<td>180</td>
<td>3</td>
</tr>
<tr>
<td>Other Gaseous Fuels</td>
<td>50 30</td>
<td>400 300</td>
<td>240</td>
<td>200</td>
</tr>
<tr>
<td>Liquid Fuels (Plant ≥50MWth to <600MWth)</td>
<td>50 30</td>
<td>400 – 1000$^{(a)}$ 400</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>Solid Fuels (Plant ≥50MWth)</td>
<td>40 25</td>
<td>200 – 600$^{(a)}$ 200</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>Solid Fuels (Plant ≥600MWth)</td>
<td>40 25</td>
<td>200 – 600$^{(a)}$ 200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(a) Targeting the lower guidelines values and recognizing variability in approaches to the management of SO2 emissions (fuel quality vs. use of secondary controls) and the potential for higher energy conversion efficiencies. Selection of the emission level in the range is to be determined by EA taking account of environmental, community health, technical and economic considerations.

General notes:
- MWh = Megawatt thermal input on HHV basis.
- N/A = not applicable.
- NDA = Non-degraded airshed; DA = Degraded airshed; Airshed should be considered as degraded if relevant ambient air quality standards (as defined in the General EHS Guidelines) are exceeded; DA/NDA to be determined for each pollutant.
- Nm3 is at one atmospheric pressure, 0 degree Celsius, dry gas.
- MWh category is to apply to the entire facility consisting of multiple units.
- Guideline values apply to facilities operating more than a combined total of 500 hours per year (i.e., if multiple units are present, the combined total of all operational units at the facility).
- See Section 2.1 for information on how facility performance is compared with these emission guidelines. The use of fuels with a low volatile content may lead to higher emission levels of NOX which should be justified in the EA.
- In the event that natural gas contains elevated sulfur levels, SO2 emissions should be no greater than that for liquid fuels.
- PM defined as total suspended particulates.

Comparison of the Guideline values with standards of selected countries / region (as of January 2017):
- Natural Gas-fired Boiler – NOx
 - EU: 100mg/Nm3
 - US: 88ng/J gross energy output
 - China: 100mg/Nm3
- Solid Fuels-fired Boiler - PM
 - EU: 20mg/Nm3, 10 (< 300MWth for coal and lignite)
 - US: 11ng/J gross energy output
 - China: 30mg/Nm3
 - India: 350mg/Nm3 (<210MWth), 140mg/Nm3 (≥210MWth)
- Solid Fuels-fired Boiler – SO2
 - EU: 400mg/Nm3 (50 – 100MWth), 200mg/Nm3 (100 – 300MWth)
 - US: 130ng/J gross energy output or 97% reduction
 - China: 50 – 200mg/Nm3 (subject to location)

Table 7. Typical Air Emission Monitoring Parameters / Frequency for Thermal Power Plants

(Note: Detailed monitoring programs should be determined based on EA)

<table>
<thead>
<tr>
<th>Combustion Technology / Fuel</th>
<th>Emission Monitoring</th>
<th>Ambient Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Particulate Matter (PM)</td>
<td>Sulfur Dioxide (SO₂)</td>
</tr>
<tr>
<td>Reciprocating Engine</td>
<td>Continuous Automatic or Indicative</td>
<td>Continuous Automatic or Indicative</td>
</tr>
<tr>
<td>Gaseous (=>50MWth to <100MWth)</td>
<td>N/A</td>
<td>Continuous Automatic or Indicative</td>
</tr>
<tr>
<td>Gaseous (=>100MWth)</td>
<td>N/A</td>
<td>Continuous Automatic</td>
</tr>
<tr>
<td>Liquid (=>50MWth to <100MWth)</td>
<td>Continuous Automatic or Indicative</td>
<td>Continuous Automatic if FGD is used or Indicative</td>
</tr>
<tr>
<td>Liquid (=>100MWth)</td>
<td>Continuous Automatic</td>
<td>Continuous Automatic if FGD is used or Indicative</td>
</tr>
<tr>
<td>Liquid Turbine</td>
<td>Continuous Automatic or Indicative</td>
<td>Continuous Automatic if FGD is used or Indicative</td>
</tr>
<tr>
<td>Gaseous (=>50MWth to <100MWth)</td>
<td>N/A</td>
<td>Continuous Automatic or Indicative</td>
</tr>
<tr>
<td>Gaseous (=>100MWth)</td>
<td>N/A</td>
<td>Continuous Automatic</td>
</tr>
<tr>
<td>Liquid (=>50MWth to <100MWth)</td>
<td>Continuous Automatic or Indicative</td>
<td>Continuous Automatic if FGD is used or Indicative</td>
</tr>
<tr>
<td>Liquid (=>100MWth)</td>
<td>Continuous Automatic or Indicative</td>
<td>Continuous Automatic if FGD is used or Indicative</td>
</tr>
<tr>
<td>Boiler</td>
<td>Continuous Automatic or Indicative</td>
<td>Continuous Automatic or Indicative</td>
</tr>
<tr>
<td>Gaseous (=>50MWth to <100MWth)</td>
<td>N/A</td>
<td>Continuous Automatic or Indicative</td>
</tr>
<tr>
<td>Gaseous (=>100MWth)</td>
<td>N/A</td>
<td>Continuous Automatic</td>
</tr>
<tr>
<td>Liquid (=>50MWth to <100MWth)</td>
<td>Continuous Automatic or Indicative</td>
<td>Continuous Automatic if FGD is used or Indicative</td>
</tr>
<tr>
<td>Liquid (=>100MWth)</td>
<td>Continuous Automatic or Indicative</td>
<td>Continuous Automatic if FGD is used or Indicative</td>
</tr>
<tr>
<td>Solid (=>50MWth to <100MWth)</td>
<td>Continuous Automatic or Indicative</td>
<td>Continuous Automatic if FGD is used or Indicative</td>
</tr>
<tr>
<td>Solid (=>100MWth)</td>
<td>Continuous Automatic</td>
<td>Continuous Automatic</td>
</tr>
</tbody>
</table>

Notes:
- Ambient air monitoring is usually not required for gaseous fueled facilities <100MWth, regardless of the combustion technology.
- Automatic means an automatic analyzer installed in situ, continuously operating, that can usually output a concentration every few seconds, designed and operated in accordance to international standards and that undergoes annual calibration checks. In the case of emissions, capable of monitoring from individual units. Typically, a minimum of two systems should be installed to cover predicted maximum ground level concentration/sensitive receptor point and a background point. As a minimum one meteorological station should be installed, equipped to collect dispersion model ready data. (See US EPA Guidance "Meteorological Monitoring Guidance for Regulatory Modeling Applications" (US EPA 2010), which describes dispersion model-ready data. For example, the guidance states that "[wind] instruments should be located over level, open terrain at a height of 10 m above the ground.").
- Passive or manual monitoring: Passive methods such as diffusion tubes can be used to provide monthly averages. Manual methods can provide daily or weekly averages.
- Examples of ‘indicative’ emissions monitoring are; NOₓ – Maximum combustion temperature and maximum excess oxygen level, SO₂ – Sulfur content of fuel, PM - Ash content of fuel, maximum flue gas flow rate, minimum power supply to ESP or minimum pressure drop across bag filters.
- If airshed is degraded, continuous ambient monitoring of pollutants for which the airshed is degraded at a minimum of two locations, irrespective of process contributions.
- MWth = Megawatt thermal input on HHV basis.
- MWth categories applicable to a facility with multiple units. In such cases, multiple sampling points are likely to be required.
- PM defined as total suspended particulates.
2.2 Occupational Health and Safety

Occupational Health and Safety Guidelines

81. Occupational health and safety performance should be evaluated against internationally published exposure guidelines, of which examples include the Threshold Limit Value (TLV®) occupational exposure guidelines and Biological Exposure Indices (BEIs®) published by American Conference of Governmental Industrial Hygienists (ACGIH), the Pocket Guide to Chemical Hazards published by the United States National Institute for Occupational Health and Safety (NIOSH), Permissible Exposure Limits (PELs) published by the Occupational Safety and Health Administration of the United States (OSHA), Indicative Occupational Exposure Limit Values published by European Union member states, or other similar sources.

82. Additional indicators specifically applicable to electric power sector activities include the ICNIRP guidelines for limiting exposure to time varying electric and magnetic fields (1HZ – 100kHZ) listed in Table 8. Additional applicable indicators such as noise, electrical hazards, air quality, etc. are presented in Section 2.0 of the General EHS Guidelines.

<p>| Table 8 - ICNIRP Reference levels for occupational exposure to time-varying electric and magnetic fields. |
|---------------------------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Frequency</th>
<th>Electric Field (V/m)</th>
<th>Magnetic Field (µT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Hz</td>
<td>10,000</td>
<td>1000</td>
</tr>
<tr>
<td>60 Hz</td>
<td>8300</td>
<td>1000</td>
</tr>
</tbody>
</table>

Source: ICNIRP Guidelines (2010) for limiting exposure to time-varying electric and magnetic fields (1HZ – 100kHZ)

Accident and Fatality Rates

83. Projects should try to reduce the number of accidents among project workers (whether directly employed or subcontracted) to a rate of zero, especially accidents that could result in lost work time, different levels of disability, or even fatalities. The accident and fatality rates of the specific facility may be benchmarked against the performance of facilities in this sector in developed countries through consultation with published sources (e.g., US Bureau of Labor Statistics and UK Health and Safety Executive).

68 Available at: https://www.cdc.gov/niosh/npg/.
69 Available at: http://www.dir.ca.gov/title8/5155table_ac1.html#_blank.
Occupational Health and Safety Monitoring

84. The working environment should be monitored for occupational hazards relevant to the specific project. Monitoring should be designed and implemented by accredited professionals\(^\text{72}\) as part of an occupational health and safety monitoring program. Facilities should also maintain a record of occupational accidents and diseases and dangerous occurrences and accidents. Additional guidance on occupational health and safety monitoring programs is provided in the General EHS Guidelines.

\(^{72}\) Accredited professionals may include Certified Industrial Hygienists, Registered Occupational Hygienists, or Certified Safety Professionals or their equivalent.
3.0 References and Additional Sources

California Division of Occupational Safety and Health. “Permissible Exposure Limits for Chemical Contaminants.” In: California Code of Regulations, Division 1, Chapter 4, Subchapter 7, Group 16, Article 107, Section 5155 “Airborne Contaminants”. http://www.dir.ca.gov/title8/ac1.pdf.

Environmental, Health, and Safety Guidelines
THERMAL POWER PLANTS
DRAFT FOR SECOND PUBLIC CONSULTATION—MAY/JUNE 2017

grid.%20Minigrid%20and%20Grid%20Electrification%20Technologies_Report%202012107.pdf?_sm_au_=i5VFMSH14FTFWD4r.

Annex A: General Description of Industry Activities

85. Thermal power plants burn fossil fuels or biomass to generate electrical energy and heat. Mechanical power is produced by a heat engine, which transforms thermal energy from combustion of a fuel into rotational energy. A generator converts that mechanical energy into electrical energy by creating relative motion between a magnetic field and a conductor. A small part of the electrical energy is used for parasitic loads on site to run the power plant and fuel systems.

86. Not all thermal energy can be transformed to mechanical power, according to the second law of thermodynamics. Therefore, thermal power plants also have a heat output. In the case of condensing boiler/steam turbine plants, the heat produced is at low temperature. If no use is found for the heat, it is lost to the environment. If higher temperature reject heat (such as from a combustion turbine or reciprocating engine; or from modification of a steam cycle to include a steam extraction or back-pressure system) is employed as useful heat (e.g., for industrial processes or district heating), the power plant is referred to as a cogeneration power plant or CHP (combined heat-and-power) plant.

Types of Thermal Power Plants

87. Thermal power plants can be divided based on the type of combustion or gasification into: Rankine Cycle (which use boilers, turbines, condensers and feed water pumps), internal combustion reciprocating engines, and combustion turbines. In addition, combined-cycle and cogeneration systems increase efficiency by utilizing heat lost by conventional combustion systems, either for additional power or for useful heat supply. The type of system is chosen based on the loads, the availability and cost of fuels, and the value of the net electrical output to the connected electric power grid. Other ancillary processes, such as fuel processing and pollution control, must also be performed to support the generation of electricity. The following subsections describe each system and then discuss ancillary processes at the facility (USEPA 1997). Figure A-1, Figure A-2 and Figure A-3 respectively present generalized flow diagrams of boiler, engine and combustion turbine-based thermal power plants and associated operations.

Rankine Cycle (Boilers and Steam Turbine systems)

88. Conventional steam-producing thermal power plants generate electricity through a series of energy conversion stages: fuel is burned in boilers to convert water to high-pressure steam, which is then used to drive a steam turbine to generate electricity. Heat for the system is usually provided by the combustion of coal, natural gas, oil, or biomass. High-temperature, high-pressure steam is generated in the boiler and then enters the steam turbine. At the other end of the steam turbine is the condenser, which is maintained at a low temperature and pressure. Steam expanding in the turbine from the high-pressure boiler pressure to the much lower condenser pressure drives the turbine, which in turn powers the electrical generator.
Note: Sorbent injection includes processes where sorbent is added with the fuel, injected in the convective pass, upstream/downstream of the economizer and upstream of the particulate collector. The sorbents used for various injection processes include limestone, lime, hydrated lime; soda ash and sodium bicarbonate as well as naturally occurring sodium carbonates and bicarbonates. Ammonia is injected in the furnace for SNCR or further downstream for SCR.

Figure A-2: Generalized Flow Diagram of a Thermal power plant (liquid fuel-fired engine case) and Associated Operations
89. Low-pressure steam exiting the turbine enters the condenser shell and is condensed on the condenser tubes, which are maintained at a low temperature by the flow of coolant, either water or air (EC, 2013). As the steam is cooled to condensate, the condensate is transported by the boiler feedwater system back to the boiler, where it is used again. A constant flow of low-temperature coolant in the condenser tubes is required to keep the condenser shell (steam side) at proper pressure and to ensure efficient electricity generation. Through the condensing process, the coolant is warmed. If the cooling system is an open or a once-through water system, this warm water is released back to the source water body. In a closed water system, the warm water is cooled by recirculation through cooling towers, lakes, or ponds, where the heat is released into the air through evaporation and/or sensible heat transfer. If a recirculating cooling system is used, only a relatively small amount of make-up water is required to offset the evaporative and drift losses and cooling tower blowdown that must be discharged periodically to control the build-

73 If groundwater is used for cooling, the cooling water is usually discharged to a surface water body.
up of solids. A recirculating system requires make-up of only a few percent compared to the flow rate of water in a once-through system, and so can be used where only borehole or local water supplies are available. Where even this water loss might be unacceptable an air cooled condenser (ACC) can be used, which does not involve a water circuit and so has no water requirement. However, ACC are significantly more expensive than water-cooled condensers and are typically only used where other options are not feasible.

90. Steam turbine based power plants typically have a thermal efficiency in the range 27 to 47 percent (gross, LHV), which indicates the proportion of the heat of combustion that is transformed into electricity. The efficiency varies with plant capacity and (often correspondingly) with the steam conditions selected. The remaining heat content of the fuel is lost through a combination of stack losses (typically 8 to 10 percent), radiation and convection from the boiler to its surroundings, heat in bottom and fly ash, heat in boiler blowdown water, energy content of unburnt fuel that passes through the boiler or is discharged with the condenser cooling water.

91. As illustrated in Table 4, the overall efficiency of a steam turbine based thermal power plant is dependent on the steam conditions/technology (e.g., subcritical, supercritical or ultra-supercritical), unit size and fuel type. Classification of the technology into sub-, super-, ultra-supercritical (USC) and advanced USC depends on the steam temperature and pressure. Table A-1 presents some commonly used definitions of each of these types of steam turbine power plants. As shown there is no universal definition of the terminology for each technology, although interpretations tend towards broadly similar temperatures and pressures based on the critical point of water (221 bar and 374°C).

Table A-1 Definition of key steam turbine based technologies in terms of main-steam conditions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temp. (°C)</td>
<td>Pressure (bar)</td>
<td>Temp. (°C)</td>
<td>Pressure (bar)</td>
</tr>
<tr>
<td>Sub-critical</td>
<td>-</td>
<td><221</td>
<td><374</td>
<td>540-570</td>
</tr>
<tr>
<td>Super-critical</td>
<td>-</td>
<td>>221</td>
<td>>374</td>
<td>580-590</td>
</tr>
<tr>
<td>Ultra-SC</td>
<td>(Mild USC) <600</td>
<td>>221</td>
<td>>374</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>>=600</td>
<td>>221</td>
<td>>580-600</td>
<td>600-760</td>
</tr>
<tr>
<td>Advanced USC(a)</td>
<td>=700</td>
<td>>270</td>
<td>>600</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) Note that the upper extent of current operating experience is around 600°C (main steam temperature) and that material development and demonstration is required to attain commercially proven applications at advanced USC steam conditions.

92. Coal and lignite are the most common solid fuels in boiler/steam turbine-based thermal power plants although biomass in dedicated plant or co-firing with coal is gaining increasing prominence. Heavy fuel oil is also used in some plants; and some coal plants have been converted to use natural gas in whole or in part.

93. Large coal-fired steam generation systems are generally designed to use pulverized coal or crushed coal; several types of coal-fired steam generators are in use, and are generally classified based on the characteristics of the coal fed to the burners and the mode of burning the coal. Typical pulverised coal types include wall/corner fired tower boilers, two-pass boilers, as well as downshot fired boilers. In fluidized-bed combustors (FBC), larger fuel material dimensions can be used, which is forced by the flow of primary air into a state of buoyancy. The air cushion
between the solids allows the particles to move freely, thus flowing like a liquid. By using this technology, \(\text{SO}_2 \) and \(\text{NO}_x \) emissions are reduced because an in-bed \(\text{SO}_2 \) sorbent, such as limestone, can be used efficiently, and because the operating temperature is relatively low, so thermal \(\text{NO}_x \) production is significantly reduced than when using conventional technology. In circulating FBC, the combustion flue gases from the furnace enter a cyclone arrangement which passes the finer material through the heat exchange surfaces and onto the flue gas treatment equipment for discharge via the stack, but return the coarser material to the furnace for further combustion.

94. Natural gas and liquid fuels are usually transported to thermal power plants via pipelines, although bio-oils would commonly be delivered by tanker. Coal and biomass fuels can be transported by ship, rail, barge, truck, or conveyor to the power plant. In some cases, coal is mixed with water to form slurry that can be pumped to the thermal power plant in a pipeline. Once solid fuel arrives at the plant, it is unloaded to storage or directly to the stoker or hopper, typically transferred by conveyor. In transporting solid fuels during warmer months and in dry climates, PM suppression may be necessary.

95. Coal may be cleaned and prepared before being either crushed or pulverized. Impurities in coal such as ash, metals, silica, and sulfur can cause boiler fouling and slagging. Coal cleaning can be used, where appropriate, to reduce sulfur in the coal to meet sulfur dioxide (\(\text{SO}_2 \)) emissions regulations and also reduce content of ash and heavy metals. Cleaning the coal is costly, but the cost can be at least partially offset by an increase in fuel efficiency, reduced emission control requirements, and lower waste management costs. Coal cleaning is typically performed at the mine by using gravity concentration, flotation, or dewatering methods.

96. Coal is transported from the coal bunker or silo to be crushed, ground, and dried further before it is fired in the burner or combustion system. Many mechanisms can be used to grind the coal and prepare it for firing. Pulverizers, cyclones, and stokers are all used to grind and dry the coal. Increasing the coal’s particle surface area and decreasing its moisture content greatly boosting its reactivity. Once prepared, the coal is transported within the plant to the combustion system. Devices at the bottom of the boilers catch ash and/or slag. Solid biomass fuels are already generally more reactive than coals and hence can be used with fewer preparation stages, involving only chipping/shredding.

Reciprocating Engines

97. Internal combustion engines convert the chemical energy of fuels (typically diesel fuel, heavy fuel oil or natural gas, but increasingly also unconventional oils or gases such as biofuels and syngas) into mechanical energy, which is used to drive a generator. There are broadly two types of engine in common use for power generation: the high- or medium-speed four-stroke engine and the low-speed, two-stroke engine. The four-stroke engine may operate on the Diesel cycle where the air/fuel mixture is ignited by the heat resulting from compression above a rising piston; or on the Otto cycle where combustion is initiated by a spark or other high-energy source. The low-speed two-stroke engine operates exclusively on the Diesel cycle. In both cycles, air is drawn or forced into a cylinder and is
compressed by a piston. Fuel is injected into the cylinder and ignited, leading to rapid expansion which pushes the piston back along the cylinder before it returns to expel the products of combustion.

98. The exhaust gases from an engine are affected by the load profile; ambient conditions such as air humidity and temperature; fuel quality, such as sulfur content, nitrogen content, viscosity, ignition ability, density, and ash content; and site conditions and the auxiliary equipment associated with the prime mover, such as cooling properties and exhaust gas back pressure. The engine parameters that affect NO\(_X\) emissions are fuel injection in terms of timing, duration, and atomization; combustion air conditions, which are affected by valve timing, the charge air system, and charge air cooling before cylinders; and the combustion process, which is affected by air and fuel mixing, combustion chamber design, and the compression ratio.\(^74\) The PM emissions are dependent on the general conditions of the engine, especially the fuel injection system and its maintenance, in addition to the ash content of the fuel, which is typically in the range 0.05–0.2 percent for liquid fuels (although some gas or non-fossil oil fuels have zero ash content). SO\(_X\) emissions are directly dependent on the sulfur content of the fuel. Industrial fuel oil may contain as little as 0.1 percent sulfur and, in some cases, up to 5 percent sulfur, although there may be price differentials between the lower and higher sulfur content oil supplies.

99. Internal combustion engines using the compression ignition cycle can be fuel flexible and can use fuels such as diesel oil, heavy fuel oil, gaseous fuels (such as natural gas, ignited by a “pilot” injection of diesel oil), crude oil, bio-liquids (such as palm oil) and emulsified fuels (such as Orimulsion). Spark ignition engines can operate (without pilot fuel for ignition) on landfill gas; biogas (from anaerobic digestion), syngas (from gasifiers), and pyrolysis gas or pyrolysis oil can also be used in specific applications.

100. Typical electrical efficiencies of engine/generator sets range from 40 percent for medium speed engines up to about 50 percent for large low-speed engines (gross, LHV basis). Higher efficiencies may be achieved in combined cycle mode where heat that would otherwise be lost to the environment is used to produce steam to drive a steam turbine generator. In CHP (Combined Heat and Power mode), where heat from the engine is used for an industrial process or for space or water heating, efficiency can be very high depending on the way that the heat is used; efficiencies above 90 percent can be achieved.

>*</small>

Spark Ignition Lean Burn Gas Engines

101. Most industrial gas-fueled spark-ignition engines operate on a “lean burn” cycle where the amount of combustion air in the cylinders is very much in excess of the minimum required for complete combustion. This has the impact of reducing the combustion temperature which has a significant impact on reducing NO\(_X\) production. Increasing the amount of air in the cylinders can lead to difficulties with the initiation of ignition and obtaining stable combustion.

\(^{74}\) If the fuel timing is too early, the cylinder pressure will increase, resulting in higher nitrogen oxide formation. If injection is timed too late, fuel consumption and turbocharger speed will increase. NO\(_X\) emissions can be reduced by later injection timing, but then PM and the amount of unburned species will increase.
Combustion, and most modern spark ignition engines utilize some sort of pre-combustion chamber in which the air/fuel mixture is less turbulent and often richer in fuel. The fuel in the pre-chamber is more easily ignited and it in turn is used to ignite the lean mixture in the main combustion chamber.

Dual Fuel Engines (DF)

102. In the context of reciprocating engines, Dual Fuel refers to engines which are run predominantly on gaseous fuels ignited by a small (5-10 percent) "pilot" injection of diesel or another suitable liquid fuel. The pilot fuel is ignited by the heat of compression of the combustion air and this engine is therefore a compression-ignition or diesel engine. This type of engine can also run on up to 100 percent liquid fuel (and is often started up on 100 percent liquid fuel) but cannot operate on gaseous fuel alone. (Note: the term “dual fuel” in the context of combustion turbines has a different meaning, in that it indicates a turbine which can be operated on a gaseous or a liquid fuel).

Treatment of Emissions from Reciprocating Engines

103. NOx emissions from lean burn gas reciprocating engines and liquid fuel diesel engines are generally difficult to reduce further by engine design. Post-treatment using selective catalytic reduction (SCR) may therefore be employed. Emissions of SOx result entirely from the sulfur content of the fuel and cannot be reduced by engine design. Post-treatment in the form of small-scale desulfurization equipment may therefore be employed if a low-sulfur fuel is not available.

Comparison of Reciprocating Engine and Combustion Turbine NOx Emissions

104. The vast majority of NOx produced in combustion turbines and reciprocating engines is a result of the high temperature combustion of fuel. In combustion turbines, there is considerable scope to manage this combustion process by using large combustors in which the fuel to air ratio, the degree of fuel/air mixing, the flame temperature and the duration of combustion can be controlled effectively; and if required water or steam can be introduced to further reduce NOx production. In reciprocating engines, the volume, shape and pressure inside the combustion chamber are constantly changing and the time available for optimal combustion, without heavily compromising efficiency, is inherently very short. Hence the scope for managing the combustion process is much more limited than it is in combustion turbines. It is unlikely that reciprocating engines, constrained by the inherent features of their design, will ever be able to match the NOx emissions from advanced combustion turbines.

Combustion Turbines

105. Gas turbine systems operate in a manner similar to steam turbine systems except that combustion gases are used to turn the turbine blades instead of steam. In addition to the electric generator, the turbine also drives a rotating compressor to pressurize the air, which is then mixed with either gas or liquid fuel in a combustion chamber.
The greater the compression, the higher the temperature and the efficiency that can be achieved in a gas turbine. Efficiencies are typically higher than for a steam turbine plant of comparable capacity, though generally lower than for internal combustion plant. Higher temperatures, however, typically lead to increases in NOx emissions. Almost all gas turbines systems are now designed to limit the emissions of NOx, either by the use of steam or water injection (which controls the peak combustion temperature), or by the use of specially designed Dry Low NOx Combustion Systems. Exhaust gases are emitted to the atmosphere from the turbine; post combustion emissions abatement is not typically required but, if necessary, may comprise selective catalytic reduction (SCR) which uses a urea or ammonia reagent.

106. Modern gas turbines can burn a range of gaseous and liquid fuels, although due to the high combustion temperatures and special coatings and materials used in the turbines, there are significant restrictions in the presence of certain contaminants. Although natural gas is the main gaseous fuel, turbines can burn a range of alternative fuels such as gasified LNG, syngas from industrial processes, and hydrogen rich fuels, for example from a pre-combustion CO2 capture system. The ability to burn alternative fuels is very much dependent on the detailed design of individual turbines and has to be investigated on a case by case basis.

107. Both pre-combustion and post combustion CO2 capture systems have been proposed for gas turbine installations, but these have yet to be demonstrated at an industrial scale.

108. Unlike a steam turbine system, simple cycle gas turbine systems do not have boilers or a steam supply, condensers, or need for a waste heat disposal system. Therefore, capital costs are much lower for a gas turbine system than for a steam system. High temperature heat recovery for CHP applications can be obtained by fitting a waste heat recovery steam generator (HRSG) to the exhaust, without any significant effect on the power output.

109. In electrical power applications, simple cycle gas turbines are often used for peaking duty, where rapid startup and short runs are needed. Most installed simple gas turbines typically have a 30 to 40 percent efficiency, although some smaller units can have efficiencies below 30 percent (net, LHV).

Combined Cycle

110. Combined-cycle generation is generally a configuration using both gas turbines and steam generators. In a combined-cycle gas turbine (CCGT), the hot exhaust gases of a gas turbine are used to provide all, or a portion of, the heat source for the boiler, which produces steam for the steam generator turbine. This combination increases the thermal efficiency to approximately 50–60 percent, with the latest large heavy duty gas turbine systems exceeding 60 percent (net, LHV). Combined-cycle systems may have multiple gas turbines driving one steam turbine or may be of single shaft design. Combined-cycle systems with diesel engines and steam generators are also sometimes used.
Cogeneration - Combined Heat and Power (CHP)

111. Cogeneration, or Combined Heat and Power (CHP), is the production of both electrical power and useful thermal output in single fuel conversion process. The thermal output may be used for producing industrial heat or steam and/or municipal heating and/or cooling (via heat-driven absorption chillers). Cogeneration is a more efficient way of using energy inputs compared to power-only systems. For steam turbine-based power plants (including in combined cycles) it involves some reduction in power output in exchange for a larger amount of heat at a useful temperature. In simple-cycle combustion turbines and internal combustion engines high temperature heat that would otherwise be wasted is available without significant penalty from the exhaust gases. Heat recovered from the cooling circuits can also be used in some applications as an alternative to sending it to cooling towers. Cogeneration technologies are applied based on the trade-off of electrical and thermal values (for steam turbines) and capital and operating costs of heat recovery and distribution compared to the increased total value of the plant outputs.

Integrated Technologies

112. Integrated coal gasification combined-cycle (IGCC) units are emerging technologies that can be considered in particular circumstances. In an IGCC system, coal is gasified to produce coal gas, which is manufactured and cleaned in a "gasifier" under pressure, thereby reducing emissions and particulates. The coal gas then is combusted in a CCGT generation system. Combustion of coal gas achieves lower emissions of NOx, SOx, PM and trace contaminants (e.g., mercury) than the combustion of coal. The most likely application for IGCC would be in association with pre-combustion capture for CCS systems.

113. With more complex technologies, internal "integration" of thermal processes will become more common. Examples include IGCC, and also the heat integration required to improve efficiency of some CCS technologies. However, these do not involve production of a net external thermal supply, and so are not classed as cogeneration for these purposes. Integrated solar combined cycle (ISCC) units are emerging technologies that involve using thermal solar power to drive a steam cycle, resulting in reduced fossil fuel use per unit of energy generated.

75 A number of IGCC plants are in commercial operation across the world, including in the United States, Europe, China and Japan. Examples include Wabash River Coal Gasification Repowering Project (the first full-size commercial IGCC plant in the US, which commenced operation in 1995 and generates 282MW), the ELCOGAS IGCC Plant in Spain (one of the largest commercial IGCC projects in the world with a generating capacity of 330MW) and the Nakoso IGCC demonstration plant in Japan (which came online in 2007 and, since completion of the demonstration project in 2013, has been operated commercially producing 250MWe). Smaller demonstration plants have been successfully developed in other countries, such as the 6.2MW Bharat Heavy Electricals Limited (BHEL) facility in Tamil Nadu, India. Large-scale IGCC plants are under development in a number of countries including Korea, Saudi Arabia, India, Pakistan and the UK. The United States Department of Energy (DOE) maintains a database of example gasification projects worldwide, including IGCC (US DOE / NETL, 2015).

76 Gasification is a thermo-chemical process involving exposing coal in a ‘gasifier’ to steam and carefully controlled amounts of air or oxygen under high temperatures and pressures.

77 Gasification is a process in which coal is introduced to a reducing atmosphere with oxygen or air and steam.
Annex B: Environmental Assessment Guidance for Thermal Power Projects

114. The development of an EA for a thermal power project should take into account any government energy and/or environmental policy or strategy including strategic aspects such as energy efficiency improvements in existing power generation, transmission, and distribution systems, demand side management, project siting, fuel choice, technology choice, and environmental performance. Environmental and social considerations should be taken into account at various points in the development of a thermal power plant and ideally early on in the process.

New Facilities and Expansion of Existing Facilities

115. An EA for new facilities and a combined EA and environmental audit for existing facilities should be carried out early in the project cycle in order to establish site-specific emissions requirements and other measures for a new or expanded thermal power plant. Table B-1 provides suggested key elements of the EA, the scope of which will depend on project-specific circumstances.

<table>
<thead>
<tr>
<th>Table B-1 Suggested Key EHS Elements for EA of New Thermal Power Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Alternatives</td>
</tr>
<tr>
<td>• Fuel selection including non-fossil fuel options (coal, oil, gas, biomass, other renewable options – wind, solar, geothermal, hydro), fuel supply sources</td>
</tr>
<tr>
<td>• Power generation technology</td>
</tr>
<tr>
<td>o Thermal generating efficiency (HHV-gross, LHV-gross, HHV-net, LHV-net)</td>
</tr>
<tr>
<td>o Cost</td>
</tr>
<tr>
<td>o CO₂ emissions performance (gCO₂/kWh)</td>
</tr>
<tr>
<td>• GHG emissions reduction / offset options</td>
</tr>
<tr>
<td>o Energy conversion efficiency</td>
</tr>
<tr>
<td>o Offset arrangement</td>
</tr>
<tr>
<td>o Use of renewable or low carbon energy sources.</td>
</tr>
<tr>
<td>o Consideration of carbon capture readiness (CCR), where practical</td>
</tr>
<tr>
<td>o Reduction of fugitive emissions and flaring</td>
</tr>
<tr>
<td>• Baseline water quality of receiving water bodies</td>
</tr>
<tr>
<td>• Water supply</td>
</tr>
<tr>
<td>o Surface water, underground water, desalination</td>
</tr>
<tr>
<td>• Cooling system</td>
</tr>
<tr>
<td>o Once-through, wet closed circuit, dry closed circuit</td>
</tr>
<tr>
<td>• Ash disposal system - wet disposal vs. dry disposal</td>
</tr>
<tr>
<td>• Pollution control</td>
</tr>
<tr>
<td>o Air emission – primary vs. secondary flue gas treatment (cost, performance)</td>
</tr>
<tr>
<td>o Effluent (cost, performance)</td>
</tr>
<tr>
<td>• Effluent discharge</td>
</tr>
<tr>
<td>o Surface water</td>
</tr>
<tr>
<td>o Evaporation</td>
</tr>
<tr>
<td>o Recycling – zero discharge</td>
</tr>
<tr>
<td>• Siting – consider alternative project locations on the basis of:</td>
</tr>
<tr>
<td>o Land acquisition consideration</td>
</tr>
<tr>
<td>o Access to fuel / electricity grid</td>
</tr>
<tr>
<td>o Existing and future land use zoning</td>
</tr>
<tr>
<td>o Existing and predicted environmental baseline (air, water, noise)</td>
</tr>
<tr>
<td>o Sustainable agricultural, forestry and livestock management practices.</td>
</tr>
<tr>
<td>o Climate change resilience</td>
</tr>
</tbody>
</table>
Table B-1 Suggested Key EHS Elements for EA of New Thermal Power Project (cont.)

<table>
<thead>
<tr>
<th>Impact Assessment</th>
<th>• Estimation of GHG emissions (tCO₂/year, gCO₂/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Air quality impact</td>
</tr>
<tr>
<td></td>
<td>o SO₂, NO₂, PM₁₀, PM₂.₅, Heavy metals as appropriate, Acid deposition if relevant</td>
</tr>
<tr>
<td></td>
<td>o Incremental impacts to the attainment of relevant air quality standards</td>
</tr>
<tr>
<td></td>
<td>o Isopleth concentration lines (short-term, annual average, as appropriate) overlaid with land use and topographic map</td>
</tr>
<tr>
<td></td>
<td>o Cumulative impacts of existing sources / future projects if known</td>
</tr>
<tr>
<td></td>
<td>o Stack height determination</td>
</tr>
<tr>
<td></td>
<td>o Visible plume assessment, where relevant²</td>
</tr>
<tr>
<td></td>
<td>• Health impact consideration</td>
</tr>
<tr>
<td></td>
<td>o Emissions to air, including health consequences of air pollution</td>
</tr>
<tr>
<td></td>
<td>o Noise impacts, on local communities</td>
</tr>
<tr>
<td></td>
<td>o Socio-economic impacts, including employment, access to health and education services</td>
</tr>
<tr>
<td></td>
<td>o Consideration of different population groups, including different ages and vulnerable groups</td>
</tr>
<tr>
<td></td>
<td>• Water quality / intake impact</td>
</tr>
<tr>
<td></td>
<td>o thermal discharge if once-through cooling system is used</td>
</tr>
<tr>
<td></td>
<td>o other key contaminants as appropriate</td>
</tr>
<tr>
<td></td>
<td>o water intake impact</td>
</tr>
<tr>
<td></td>
<td>• Noise impact</td>
</tr>
<tr>
<td></td>
<td>o Noise contour lines overlaid with land use and locations of receptors</td>
</tr>
<tr>
<td></td>
<td>• Determination of pollution prevention and abatement measures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mitigation Measures / Management Program</th>
<th>• Air (Stack height, pollution control measures, cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• GHG emissions (Carbon capture and storage, CCS)</td>
</tr>
<tr>
<td></td>
<td>• Effluent (wastewater treatment measures, cost)</td>
</tr>
<tr>
<td></td>
<td>• Noise (noise control measures, cost)</td>
</tr>
<tr>
<td></td>
<td>• Waste utilization / disposal (e.g., ash, FGD by-product, used oil)</td>
</tr>
<tr>
<td></td>
<td>o Ash management plan (quantitative balance of ash generation, disposal, utilization, size of ash disposal site, ash transportation arrangement)</td>
</tr>
<tr>
<td></td>
<td>• Fuel supply arrangement</td>
</tr>
<tr>
<td></td>
<td>• Emergency preparedness and response plan</td>
</tr>
<tr>
<td></td>
<td>• Industrial risk assessment if relevant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitoring Program</th>
<th>• Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Sampling Frequency</td>
</tr>
<tr>
<td></td>
<td>• Evaluation Criteria</td>
</tr>
<tr>
<td></td>
<td>• Sampling points overlaid with relevant site layout / surrounding maps</td>
</tr>
<tr>
<td></td>
<td>• Cost</td>
</tr>
</tbody>
</table>

A Visible plume assessment typically involves modelling using a complex model such as ADMS to predict the occurrence and likely length of visible plumes throughout the year. Impacts are considered in the context of the presence and location of sensitive receptors with respect to the plume and whether the plume would extend beyond the site boundary. Model results can also support a landscape and visual effects assessment using photo-montages. A visible plume assessment will typically only be required in situations where the plant is considered likely to produce a visible plume and where the surrounding area is particularly sensitive. Plants considered more likely to produce visible plumes are those using fuels with a high moisture content, such as biomass plants, and those using ‘wet scrubbing’ technologies to reduce pollutant emissions.

² Health impact assessment (HIA) typically builds on the findings of environmental and social studies to quantitatively or qualitatively describe the health consequences of identified environmental / social impacts. For example, if a worsening or improvement in air quality is identified in the air quality assessment, an HIA would assess the implications of this on the health of affected communities; this may consider additional information such as existing mortality rates or hospital admissions for respiratory diseases. For further information on health impact assessment approaches, see for example World Health Organization (WHO), IAIA (2006), IFC (2009) and the Institute of Operational Medicine Centre for Health Impact Assessment (IOM—CHIA).

Rehabilitation of Existing Facilities

116. Rehabilitation of an existing power plant may be for reasons of component age; change in fuel; need to meet stricter environmental limits; change in configuration; or some combination of these factors. Refurbishment of
equipment may be expected to incorporate the latest efficiency improvements, where compatible with retained existing components (e.g., in terms of temperatures and pressures). Net greenhouse gas emissions from an existing plant can be reduced by switching fuels, most notably to bio-based co-firing; however, if 100 percent bio-based firing is contemplated then the plant should be treated in these Guidelines in the same way as for a completely new build.

117. More minor changes to improve environmental performance would include fitting of low-NO\textsubscript{x} burners; and injection of urea or ammonia (for either SNCR or SCR) for NO\textsubscript{x} control; addition of post-combustion alkaline reagent injection (dry; semi-dry; or wet FGD) for SO\textsubscript{2} and HCl control; injection of activated carbon to capture heavy metals and dioxins/furans; and improvement of particulate control measures by adding cyclones and fabric filters. Turbine steam extractions or other heat recovery methods could also be added in order to serve newly connected thermal loads (cogeneration).

118. An EA of the proposed rehabilitation should be carried out early in the process of preparing the project in order to allow an opportunity to evaluate alternative rehabilitation options before key design decisions are finalized. The assessment should include an environmental audit that examines the impacts of the existing plant’s operations on nearby populations and ecosystems, supplemented by an EA that examines the changes in these impacts that would result under alternative specifications for the rehabilitation, and the estimated capital and operating costs associated with each option. Depending on the scale and nature of the rehabilitation, the audit/EA may be relatively narrow in scope, focusing on only a small number of specific concerns that would be affected by the project, or it may be as extensive as would be appropriate for the construction of a new unit at the same site. Normally, it should cover the following points:

- Ambient environmental quality in the airshed or water basin affected by the plant, together with approximate estimates of the contribution of the plant to total emissions loads of the main pollutants of concern.
- The impact of the plant, under existing operating conditions and under alternative scenarios for rehabilitation, on ambient air and water quality affecting neighboring populations and sensitive ecosystems
- The likely costs of achieving alternative emissions standards or other environmental targets for the plant as a whole or for specific aspects of its operations.
- Recommendations concerning a range of cost effective measures for improving the environmental performance of the plant within the framework of the rehabilitation project and any associated emissions standards or other requirements implied by the adoption of specific measures.

119. These issues should be covered at a level of detail appropriate to the nature and scale of the proposed project. If the plant is located in an airshed or water basin that is polluted as a result of emissions from a range of sources, including the plant itself, comparisons should be made of the relative costs of improving ambient air or water quality by reducing emissions from the plant or by reducing emissions from other sources.