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Executive Summary

By successfully reaching historically underserved and 
vulnerable populations such as women, the poor, and people 
living in rural communities, Digital Financial Services have 
contributed to unprecedented growth in financial inclusion 
in Sub-Saharan Africa during the past decade. The adoption 
and usage of DFS -- and the subsequent financial inclusion 
that has resulted -- has helped reduce poverty and increase 
prosperity throughout the region. Still, service providers 
and development practitioners often lack reliable, detailed, 
and low-cost poverty data that could help them accurately 
identify additional communities and individuals who would 
benefit the most from access to financial services. The lack 
of data hinders the deployment of services throughout the 
region and complicates efforts to monitor and evaluate the 
impact that interventions have on poverty.
 
Relying on traditional household surveys for poverty data 
is time consuming and expensive. What’s more, by the 
time the data are collected and analyzed, it is often out of 
date. But there are alternatives for estimating and mapping 
poverty with the goal of accelerating and expanding 
financial inclusion and helping DFS providers target the 
poorest. Machine learning algorithms can, for example, 
be trained to predict poverty based on imagery captured 
by satellites and from call detail records, which document 
mobile phone usage. For this research study, the IFC-
Mastercard Foundation Partnership for Financial Inclusion 
collaborated with the Stanford University Sustainability 
and Artificial Intelligence Lab to advance existing poverty 
prediction models to generate poverty estimates at 
neighborhood-level resolution, which is much more refined 
than macro-level estimates produced by research to date. 
Satellite Imagery and call detail records (CDR), validated by 
ground-truth surveys, were used to develop models that 
can predict poverty in Ghana and Uganda. 

The study finds that it is possible to make meaningful 
welfare estimates based on satellite imagery combined 
with geo-spatial boosting at the neighborhood-level when 
lower levels of precision are acceptable. The study makes 
estimates about poverty demographics in regions that are 
bounded by cell tower locations.  Predicting poverty around 
cell tower locations allows small area welfare estimation in 
urban environments where cell tower density is high. Above 
all, daytime satellite imagery proves to be a good basis for 
poverty prediction, but significant caveats remain. Models 
may be improved by adding context-specific segmentation 

that can, for example, detect features such as cars or trees 
on satellite images in urban areas.  This constitutes a 
future area of research for the community. In lieu of more 
advanced machine vision feature detection, this study 
employs spatial boosting techniques, which are found to 
improve models for estimating poverty in rural areas where 
there are fewer welfare variations among neighbors than 
in urban centers. Although, with increased urbanization 
over time, this is another area that satellite imaging could 
support.  Changes in welfare over time, particularly due to 
the availability of financial services, are likely to considerably 
outpace observable infrastructure changes, not least due to 
the time needed to construct new buildings.  Here, changes 
in financial service usage patterns through provider data 
are expected to yield stronger implications on financial 
inclusion and livelihood effects on a year to year basis.

The study compared various statistical poverty estimation 
methods and identified the Poverty Probability Index 
(PPI), which yields better results with satellite imagery. 
Low activity levels and variation of transaction behavior 
can make it difficult to use phone and mobile money 
data for poverty prediction. Although, remote sensing 
poverty estimation models can reduce the sample size for 
surveys, a broad spectrum of representative ground-truth 
survey data is essential for developing and training well 
performing poverty estimation models.  In this respect, 
the research finds that remote sensing and geospatial 
boosting approaches can be used to improve efficiency and 
optimization for traditional household survey methods.  
However, significant work remains before remote sensing 
models can fully replace ground-based surveys.

This paper also explores the interpretation of predicted 
poverty scores, using PPI estimators, presenting them on 
heat maps for Ghana at neighborhood-level granularity 
and layering atop information about telephone and mobile 
money activity of users in the same areas to inform targeting 
and monitoring of interventions for poverty reduction 
and financial inclusion. This visual layering is proposed 
as a conceptual strategy for how combining techniques 
discussed in this study might be used to better quantify 
financial access, financial inclusion reach and support 
providers to better understand customer demographics 
and size their markets. 
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Executive Summary Visualization of Image Table 8: Mapping PPI predictive scores using the study mapping approach 
and predictive scores, compared against a satellite image. PPI is the Poverty Probability Index, a standard poverty estimator 
tool that can translate a PPI score into estimates of multiple benchmarks (eg, $1.90/day or $5/day or access to types of 
infrastructure).
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Introduction

Financial Inclusion empowers underserved individuals to 
participate in the formal economy, facilitates access to 
financial services that help businesses grow, and is critical 
to achieving economic development policies that aim to 
eliminate poverty. Digital Financial Services support these 
development interventions by increasing the breadth of 
delivery channels, variety of services, and affordability 
of financial access for consumers and companies. DFS 
are tuned to reaching segments that are historically 
underserved, such as women, rural individuals and the 
poor. This is especially evident in Sub-Saharan Africa, where 
cell phone penetration reached 44 percent as of 20181, 
meaning that nearly half of the one billion adults in the 
region now have the potential to access financial services 
through mobile phones. The growing prevalence of DFS on 
the continent has been a driving factor in enabling financial 
access for poor and underserved individuals, as mobile 
money usage has increased from near nil just seven years 
ago, to 20.9 percent by 2018. Today, financial inclusion is at 
43 percent in Sub-Saharan Africa2. While marking impressive 
reach, it is difficult to precisely quantify the extent to which 
the poorest segments are represented in this growth. 

Development strategies to accelerate financial inclusion — 
and commercial providers seeking to scale Digital Financial 
Services — lack access to reliable demographic data on 
poverty. Collecting data using traditional household surveys 
is time consuming, expensive, and data are quickly outdated 
by economic changes and population movements. Using 
remote sensing technology, call detail records and machine 
learning algorithms provides a solution to close this gap. 

Call detail records have been successfully used to predict 
poverty in some countries; both, for models that attempt 
to predict welfare based on call activity only, as well as 
for combined models that include telephone data and 
remote sensing covariates3. However, relying on CDR data 
for regular poverty measurement may be complicated as 
these data are privately managed by service providers.  
Unless data from all main service providers in a country 
is combined, poverty estimation is likely to be biased or 
incomplete. 

Other methods have also shown promise. Notably, using 
night time satellite images to view and measure ground-
based light emissions that can correlate the magnitude of 
intensity and coverage area cast by light emissions with 
economic activity and general well-being of denizens within 
the coverage zone4. While results from night light images 
are tantalizing, the level of granularity is low.

As light diffuses over large areas, this approach alone 
provides meaningful interpretation often only at the city-
level, or even at more roughly defined coverage areas 
of larger administrative districts. As demographic and 
wealth variations are far more granular - both within 
urban neighborhoods and in rural environments - satellite-
based poverty estimation models must deliver much more 
granular estimates to yield sufficient information for 
policy makers to target underserved populations; and for 
commercial DFS providers to better segment their potential 
customer base and service coverage areas.

Using day-time satellite images provides an alternative 
approach to resolve these granularity issues and deliver 
results that are more aligned with the data required by 
policy-makers and DFS providers. This approach was 
demonstrated by Jean et al. (2016), using a convolutional 
neural network methodology to identify visible features in 
high-resolution day-time satellite images, which correlate 
with demographic data (e.g., roads, agricultural areas, 
urban environments, building types).

This study expands the approach through a collaboration 
between Stanford University’s Sustainability and Artificial 
Intelligence Lab and the IFC-Mastercard Foundation 
Partnership for Financial Inclusion. The study engages 
questions and areas of further exploration identified in 
existing literature to specifically look at using day-time 
satellite imagine methods to predict poverty at the lowest 
income segments (e.g., below $1.90, or $5.00 per capita per 
day, using standard poverty threshold benchmarks).  

Here, different poverty estimation models are developed 
for two African countries. Multiple measures of poverty are 
employed to compare and understand relevance for training 
models of this nature. The study compares modelling 
methods and poverty definitions across these two country 
contexts to learn about trade-offs and optimizations 
for developing models to predict poverty. The applied 
research goal is to support DFS providers and financial 
inclusion policy interventions with a strategy for enhanced 
information about markets, services and the characteristics 
of the people who use (or don’t use) these services. The 
approach defines demographic segments geographically, 
to establish tangible micro-markets as a unit of analysis, 
and then explores these segments with respect to predicted 
wealth characteristics, access and usage of digital financial 
services.

1 GMSA 2018
2 Demirgüç-Kunt et al. 2018
3 Steele et al. 2017
4 See for example Gosh et al. 2013
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Data and Methods

Ground-Truth Survey data 

This study was implemented in Uganda and Ghana.  In 
both countries, ground-truth poverty data was collected 
using household survey instruments. These instruments 
incorporated modules to assess household poverty 
and welfare levels. Instead of directly asking household 
respondents about their consumption levels, which are 
likely subject to inaccuracies due to seasonal fluctuations 
and recall bias, different poverty measurement tools 
were used that eliminated the need to collect detailed 
consumption data. The survey instrument for Uganda 
included a SWIFT (Survey of Well-being via Instant and 
Frequent Tracking) poverty estimation module. Whereas in 
Ghana, a PPI (Poverty Probability Index) estimation module 
was used. In addition, information about households’ asset 
ownership was collected in both countries to calculate an 
asset-based wealth index, using a similar approach as the 
SustainLab Index used similar research in this area5.

• PPI is a poverty measurement tool to compute the 
likelihood that a surveyed household is living below 
a given poverty line based on answers to 10 country 
specific multiple-choice questions about household 
characteristics and asset ownership. Questions 
can also include visual, observable features such as 
house roofing material (e.g., is your roof tile, thatch, 
corrugated metal) or if there is an outdoor latrine. The 
PPI score is a value between zero and 100; it can be 
calculated for every household. The lower the score, the 
higher the likelihood of a given household to be poor. 
Look-up tables convert PPI scores into likelihoods to 
fall under different poverty lines in a country and may 
be interpreted for multiple different poverty threshold 
benchmarks using the same PPI score.

• The SWIFT methodology was originally developed 
to monitor one of the World Bank Group’s goals of 
ending extreme poverty. It helps estimate household 
expenditure data and poverty rates in a simple and cost-
effective manner based on answers to 10-15 general 
household level survey questions (e.g. education levels, 
asset ownership and household size). SWIFT models for 
specific regions and countries are derived from existing 
household budget survey data (multiple rounds of 
LSMS surveys) indicating which variables are poverty 
correlates and should be collected in the core SWIFT 
survey to then estimate consumption and poverty 
rates.

• The SustainLab Asset-based Wealth Index calculated 
for this study used principal component analysis 
on responses to a panel of seven asset ownership 
questions within a household survey. The largest 
resulting principal component was used as an index 
value. The hypothesis was that this index would 
potentially provide a better method of aggregating 
different contributions of variables to derive poverty 
levels than a mere sum of scores that weighs different 
answers to a list of questions, as the PPI methodology 
does.  This method was previously employed by Jean et 
al as a poverty predictor in remote sensing models and 
was therefore used for prediction models in both Ghana 
and Uganda for consistency.

The Uganda survey focused strictly on Northern Uganda, 
one of the poorest areas of the country.  In conjunction 
with another study investigating the adoption and impact 
of DFS to better scale financial inclusion, IFC collected 
data between November 2017 and January 2018 for 9,037 
households within 926 enumeration areas covering the 
Ugandan administrative areas of Karamoja, Mid North and 
West Nile, and Adjumani (see Figure 1).  

To ensure ability to tune the satellite image-based 
modelling, the survey incorporated robust GPS data for 
each surveyed household, at high levels of precision6. This 
aimed to resolve one of the issues that was previously 
faced by Jean et al. (2016), which drew on third-party geo-
localized survey data that reduced precision by adding up 
to 10 km of random noise. Here, coordinates were precise 
within a few meters of survey location.

Figure 1: Enumeration coverage areas in 
Northern Uganda

5 Neal Jean, Marshall Burke, Michael Xie, W. Matthew Davis, David B. Lobell, Stefano Ermon. “Combining satellite imagery and machine learning to 
predict poverty,” Science, 19 Aug 2016: Vol. 353, Issue 6301, pp. 790-794

6 GPS data achieved high levels of precision overall and the survey data collection methodology implemented robust cross-checking and validation to 
ensure accuracy and correction of GPS measurement errors. However, due to survey environments in very rural areas, often with farmers, individuals 
often responded to surveys at community village areas that were proximate to houses but not precisely located at the household for which household 
information was being reported.
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Similarly, the Ghana survey ensured precise geo-localized 
survey data. The survey design covered a much larger area, 
spanning across Ghana, rather than the regional focus 
implemented in Uganda.  Moreover, the enumeration areas 
were more focused on urban centers and densely populated 
areas (see Figure 2).

The survey was implemented from December 2017 to 
February 2018 for 2,165 individuals within six enumeration 
areas, in which coverage zones ranged between a one 
and three km radius in seven Ghanaian cities and villages, 
distributed in five principle administrative regions.

Call Detail Record and Mobile Money Data

Through IFC project operations, the study incorporated 
anonymized call detail records and mobile money transaction 
data from mobile network operators (MNOs) respectively 
in Ghana and Uganda. Both operators have significant 
national coverage and the datasets provided customer-level 
information on numbers of incoming and outgoing calls; 
SMS volumes; Cash-In transactions; Cash-Out transactions; 
and transfers between mobile money accounts. Information 
about the geo-localization of activity through cell tower 
locations was also provided. 

The study expected to identify correspondence between 
call detail record data and the household survey data from 
respondent by matching phone numbers across these data 
sets.  The objective was to explore additional CDR-based 
models for predicting poverty. In both countries, the surveys 
were conducted using a randomized design; and in both 
cases, meaningful overlaps were not obtained between the 
surveyed customers and the CDR data. In Uganda, of the 

9,037 survey responses, only 222 matched the CDR data. For 
Ghana, of the 2,165 survey responses, 166 matched the CDR 
data. With mobile money adoption levels still lying below the 
levels of sim card ownership, matching survey and mobile 
money transaction data was even more difficult. In Ghana 
only 57 household records matched the respective mobile 
money dataset. Ultimately, too few observations could be 
matched directly to train meaningful prediction models. For 
the CDR models presented in this study, another approach 
was therefore used for approximation. CDR models were 
trained with household information that was aggregated and 
matched with telephone activity data by cell tower catchment 
area and not by individual household. Results from these 
models are presented in Table 1 for the sake of completeness, 
but accuracy figures are unsurprisingly very low and hold 
little interpretive value due to the poor alignment between 
survey and provider data and extremely small training sample 
underlying the model.

Figure 2: Enumeration coverage areas in Ghana. 
Zones are described in terms of their principle regional cities. 1=Bolgatanga, 2=Tamale, 3=Yendi, 4=Kumasi, 
5=Tarkwa, 6=Accra + Tema
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Image Table 1: Daytime satellite sampled images: 67m2 resolution from DigitalGlobe

Uganda Samples

Ghana Samples

Multiple factors may explain the low overlap of survey and 
mobile network operator data. Different time periods of data 
collection for survey and MNO data are one factor. Survey 
respondents may have joined the respective MNO networks 
after CDR data was extracted or may have churned before. 
It was moreover determined that survey enumeration areas 
poorly overlapped with areas where these operators had 
meaningful market share. Even though service was widely 
available, other providers dominated these markets. This was 
confirmed by survey respondents, who reported using other 
providers. Lastly, in Uganda, the rural-focused survey also 
found that only one-third of respondents had phones, which 
considerably limited the pool of potential correspondences 
between survey and CDR. This yields an important insight for 
future research: there may be trade-offs between randomized 
representativeness of a population sample and ability to 
meaningfully correlate demographic statistics with provider 
data. A stratified survey approach to deliberately over-sample 
individuals who are customers of the service provider should 
be considered.

Satellite Images

Models were developed using both day and night-time 
satellite imagery. Day-time images were sourced from 
DigitalGlobe, with a high resolution of 67m2. Night-time 
images were sourced from VIIRS, at 750m2 resolution. Below, 
example images are shown for Uganda and Ghana. Survey 
regions in Uganda were far more rural, by design. Whereas in 
Ghana, survey coverage included more urban and peri-urban 
environments across the country. The ‘ruralness’ in the Uganda 
survey area is more pronounced in the nightlight images, 
showing scant light signals in most of the images. The more 
urbanized regions in Ghana, by comparison, show gradients 
of deep purple zones (dark, low-light emissions, correlating 
to low electrification) to bright yellow zones (bright, intense-
light emissions, correlating to people using artificial light in 
homes, offices, cars; general urbanization). These sample 
images also illustrate the difficulty of using night-time light 
emission imagery for household-level poverty prediction. At 
750m2 resolution, entire neighborhoods can fit under a single 
pixel, and an entire city within a single image. Even though 
night-time images were incorporated into the predictive 
modelling, the coarse resolution of the information yielded 
little predictive value to improve model accuracy or descriptive 
power at the granular neighborhood level sought.

Uganda shows increased prevalence of rural features: farms and open space surrounding single-level buildings.  Ghana shows 
mixtures of features and increased urbanization, neighborhood housing configurations, paved roads and multi-story buildings.
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Image Table 2: Nighttime satellite sampled images: 750m2 resolution from VIIRS

Uganda Samples

Ghana Samples

The random sampling of representative nighttime images aligns with the day time images: the uniformly dark 
purple images in Uganda indicate extremely little light emission, meaning few people live in the coverage zone, or those that do 
aren’t using lighting at night.  Whereas in Ghana, the bright yellow and shades of color depict increased urbanization and peoples’ 
collective usage of lighting within the coverage zone.
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Spatial Segmentation

The MNO cell tower data was used to create geographical 
segments by constructing Voronoi7 polygons based on the 
tower locations. As both network operators had national 
coverage, this provided a useful method of creating spatial 
zones that covered areas from neighborhoods in densely 
populated urban areas (where cell tower density is high), up 
to much larger zones in rural or unpopulated areas (where cell 
tower density is low, or nonexistent).  Although approximate, 
the technique enables grouping poverty estimates by cell 
tower coverage zone, and by association, to estimate 
demographic averages of people living within the coverage 
zone of their nearest “home” tower. For service providers, 
this allows interpreting customer demographics in terms of 
populations living near cell towers.

For developing poverty prediction models, physical images 
around cell towers were used, rather than the full geographic 
area covered by the Voronoi polygon. This was for the sake 
of computational simplicity and the cost of accessing and 
computationally processing high quality daytime satellite 
images (Ghana, for example, would be represented by 
approximately 53 million individual high-resolution image 
files). In this analysis, satellite images were downloaded 
from DigitalGlobe and VIIRS, around the geographical 
areas corresponding to the GPS coordinates collected in 
the household surveys conducted and the mobile network 
operator tower sites.

In high-density urban areas, higher tower density results 
in much smaller polygons, permitting the satellite picture 
around the tower to suitably represent the demographics 
of the overall area, typically a neighborhood or even smaller 
coverage zone.  However, in rural areas, the Voronoi polygons 
are far larger due to low cell tower density. A shortcoming of 
the methodology is that it may not be reasonable to assume 
that the area seen on the satellite image around the tower is 
representative of the broader region. In fact, it may not be: in 
rural areas, a tower could be placed centrally in a town, while 

the environs beyond may be entirely uninhabited. In that case, 
the poverty prediction model would therefore likely over-
estimate poverty averages for the associated polygon area. 
This acknowledged, poverty estimates may still reasonably 
estimate the average demographics of the individuals within a 
polygon area, since disproportionally more people are likely to 
live in a rural town as compared to the very sparsely populated 
surrounding area.

Spatial Boosting

Granular poverty prediction models based on satellite 
imagery are challenged by individual images having relatively 
low-density of signal-rich features in a given image tile. For 
example, a grassy image might show a green field whose 
trimmed grass is recently “mowed” by livestock in a sparsely 
populated rural area. Similarly, an image of trimmed grass 
might also show the manicured lawn of an upscale residential 
neighborhood in an urban area. The figure below illustrates 
this point, comparing top and bottom wealth photo examples 
in Northern Uganda. Where the wealthier image is similarly 
rural and depicting agricultural features, it also shows nuances 
with more refined looking fields, higher quality thatch roofing 
on out-buildings, and in the bottom-right corner, the cropped 
portion of a larger building with an angular blue roof. In this 
sense, it may be unclear if trimmed grass per se; or thatched 
roofs per se, correlate with income (let alone the ability of 
machine learning algorithms to identify such features). The 
problem arises: which visual patterns generate signals to pay 
attention to.

Image Table 3: Comparing bottom and top wealth images in rural Uganda

Bottom 1% of surveyed wealth Top 1% of surveyed wealth

7 A Voronoi decomposition is a method of segmenting space around a set of points such that the borders of the resulting polygon area are equidistant from 
other adjacent points. Any given point is thereby located at the weighted center of the polygon, in relation to its neighboring points.
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The ideal goal of remote sensing poverty prediction would be 
to shine a viewpoint over any spot on earth, accurately extract 
visual information, and derive estimates of the demographic 
norms of the individuals living in the area.  Presently, the 
technology does not yet permit ex-ante predictions – ground-
truth data is necessary to train predictive models with known 
true data points. Research of this nature therefore requires 
relatively large survey samples. A challenge – also faced by this 
study – is that surveys must be representative not only of the 
demographic population, but also of the visual space. That is, 
to have data for individuals across the income spectrum – and 
also to have an additional dimension of the spectrum of visual 
environments in which they live.  For example, what a low-
income house and field in a rural area looks like, as compared 
to a high-income house and field in a rural area.  

In Uganda, surveys expressly focused on rural low-income 
areas and generated GPS coordinates for images around low-
income households. The result was thin survey data of wealthy 
comparators with which to train models to differentiate the 
visual cues associated with the spread of welfare and poverty 
levels. Somewhat conversely, in Ghana, survey data focused 
on urban areas, which resulted in fewer samples of what 
rural demographic variations looked like.  However, as Ghana 
surveys had much broader geographic coverage, surveys and 
images were far more diverse compared with Uganda and 
generated a stronger set of features.

To ameliorate the issue of survey visual variation, a method 
of spatial boosting was employed to estimate income 
demographic information for visual areas that did not have an 
explicit survey data point.  This was done by creating Voronoi 
polygons between known household survey GPS coordinates, 
a strategy similar to the spatial segmentation employed at the 
level of cell tower locations. Here, images that were not directly 
associated with household GPS coordinates inferred poverty 
levels as a weighted average of several closest neighbors, by 
assuming that households near known survey locations were 
likely to evidence similar income demographics.  

In rural areas that are sparsely populated, this assumption is 
stronger, as more geographic distance will likely be traveled 
before large changes are observed in the population income 
characteristics. In urban areas, a household might also be 
expected to evidence similar characteristics as immediate 
neighbors, but the rate of change between a less-wealthy 
and relatively more-wealthy neighborhood might be more 
sudden.  Indeed, this assumption is borne out in the results, 
where spatial modelling in Uganda shows a higher R-squared 
value as compared to Ghana, where the small-scale spatial 
variation is higher, leading to lower explanatory power.

The spatial boosting approach is depicted in Figure 3 below, 
where the central satellite image’s asset-based wealth index 
score is estimated by using the nearest neighbors whose 
scores are calculated using known survey data.

Figure 3: Nearest-neighbor spatial boosting
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Aggregating the spatial boosting across the survey 
enumeration areas is depicted in Figure 3, for Uganda.  The 
strongest signal was detected at an aggregation of 10-nearest 
neighbors.

In Ghana, 8-nearest neighbors clustering was used. Image 
Table 4 below compares spatial boosting at the aggregate 
level of the entire survey coverage area in Uganda: the visual 
differences are quite small between the actual survey data and 
the predicted scores at the level of the Voronoi polygons.

Image Table 4: Aggregated spatial boosting in Uganda: comparing survey and predicted values

Ground-Truth Survey Score 
Gradients

Poverty Prediction Score 
Gradients

Computer Vision Models

The satellite models that are presented in this study are 
models that predict poverty levels based on features derived 
from satellite imagery through programmed visual pattern 
recognition. The models are convolutional neural networks, 
which are a classification of machine learning algorithms.  
Meaning, with appropriate training, the computer can 
effectively learn to “see” relevant features in the associated 
images. 

Convolutional neural networks are neural networks with 
multiple mathematical layers (between input and output 
layers) that can recognize visual patterns directly from 
pixel images with minimal processing since they filter pixel 
connections by proximity.

The satellite models presented below are so-called ResNet 
models. ResNet models are convolutional models that 
through their design address the common challenge when 
training networks with multiple layers that normally let 
model performance saturate or decrease with the addition 
of layers (vanishing gradient problem). For this study, ResNet 
models were used that had been pre-trained for pattern 
recognition from generic images and they were further fine-
tuned with additional layers and simple extensions based on 
the relevant country datasets in Ghana and Uganda and the 
study’s objectives to see features that correlate with income 
demographics.
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Results

A variety of prediction methods were explored in the Uganda 
and Ghana contexts, as well as using different poverty score 
metrics as dependent variables for the models.  A comparative 
table of key models is shown below (Table 1) specifying each 
model by listing the category of features that were included in 
the model (from satellite imagery, through spatial boosting or 
derived from call detail records) as well as the poverty metric 
that was predicted respectively. Models that use spatial 
boosting in combination with satellite imaging yielded the 
most explanatory power in both countries. 

Models

In Uganda, using a combined model approach yielded an 
R-squared value of 0.28 using an asset-based wealth index as 
the outcome poverty metric.  In Ghana, the highest R-squared 
value observed was 0.2, using an asset-based wealth index as 
the dependent variable.  In basic terms, this means that the 
predictive models are able to explain 28 percent and 20 percent 
of the variation in poverty observed in Uganda and Ghana, 
respectively. Generally, these figures are not considered 
especially strong indicators of explanatory power. However, 
in the context of explaining differences in welfare from one 
neighborhood to the next, even a small percentage may offer 
meaningful insight.

Benchmarking

Among the poorest demographics, these results are 
comparable to previous work conducted by Jean et al. (2016). 
In that study, the pooled results of the day-time satellite image 
model yielded R-squared values of approximately 0.10 to 0.25 
for the set of poorest clusters below the poverty line of $1.90 
per capita per day (see Figure 4).

Explanatory power falls between 1x and 2x poverty line, 
suggesting difficulty in identifying visual signals to segment 
gradients of poverty. Noting that the authors’ approach 
yielded scores for larger geographic areas, the model was able 
to achieve R-squared results of up to 0.6 across all ranges of 
income demographic clusters, notably increasing explanatory 
power at levels greater than $5.00 per capita per day income 
(i.e., approximately 3x and above).

MODEL POVERTY METRIC R2

Ghana

Satellite Asset-based wealth index 0.01

Spatial Asset-based wealth index 0.20

Satellite + Spatial PPI 0.15

CDR PPI 0.07

Uganda

Satellite Asset-based wealth index 0.14

Spatial Asset-based wealth index 0.23

Satellite + Spatial Asset-based wealth index 0.28

CDR SWIFT 0.01

Table 1: Comparison of Poverty Prediction Models
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Figure 4: Pooled observations of transfer learning model and nightlights model 
by Jean et al. (2016)

This research explored poverty estimates at more granular 
household and neighborhood levels. As previously noted, the 
CDR-based models were inconclusive due to poor ability to 
match phone customers and survey responses and acquire a 
statistically robust sample. Therefore, the models produced 
results at the relatively granular resolution of neighborhoods, 
as defined by areas in proximity to cell phone tower locations 
at a variable resolution of the Voronoi polygons. As spatial 
resolution of poverty estimates was variable, depending on 
cell tower density, the results are not directly comparable to 
the more constant resolution discussed in Jean et al. (2016). 
Nevertheless, models achieving R-squared values of 0.28 
and 0.2 may be considered reasonable, given the nature of 
the input data and granularity of estimates sought, and that 
estimates were specifically targeting the lowest clusters of 
observed income.

Poverty Estimators

Whereas other research has focused on income estimates in 
a more absolute range across populations (such as predicting 
a specific income value), this study incorporated different 
poverty estimation methods, PPI, SWIFT and an asset-based 
wealth index, to estimate poverty prevalence more generally. 
The PPI and SWIFT approaches achieve this by providing a 
statistical estimate that a household is simply above or below 
a given poverty line. Focusing at more granular spatial levels 
of urban neighborhoods results in lower power of models 
to explain the range of approximated levels of household 
consumption and poverty incidence but the models show a 
reasonable ability to impute overall prevalence of poverty.  

Below, predicted poverty scores, their interpretation, and 
comparison with actual images are explored and discussed 
in more detail by the example of the PPI predictions of the 
Ghana satellite model. Although model results primarily 
incorporated the SustainLab asset-based index approach and 
provide some comparability across the Uganda and Ghana 
contexts, the PPI was considered to offer more interpretive 
power due to the ability to resolve PPI index scores across 
multiple poverty benchmarks.  Further, in the course of this 
study, some exploratory analysis suggested the design of the 
PPI survey might better correspond to visual features that can 
be resolved by vision models.  This may be one area where 
future research might specifically focus on identifying features 
that tools like PPI have established as statistically significant 
poverty estimators.

For Ghana, using the PPI poverty estimator, the predicted 
distribution compares favorably with the observed PPI results 
from the survey. Across the 1,262 Voronoi polygon coverage 
areas in Ghana, the model predicts a median PPI score of 63.3. 
This is consistent with a median PPI score of 63 observed by 
the household surveys.8 Figure 5 shows that the distribution 
of observed PPI scores and the distribution of predicted scores 
are very similar, centered around a score value of 62-63, with 
most score variation happening ten score points below and 
above this value, and slightly skewed toward higher (non-
poor) scores. A score of 60-64 means that nine percent of the 
population is likely to fall below the $2.50/day poverty line; 
and about 52 percent are likely to fall below the higher $5.00/
day poverty line.  
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8 Statistical lookup tables that convert PPI scores (here between 60 and 64)  into the corresponding likelihoods of falling below different poverty lines in a 
country are produced by Innovations for Poverty Action and are available here: https://www.povertyindex.org/country/ghana. 
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Figure 5: Observed vs Predicted PPI Score Distributions in Ghana

Distribution of: PPI Predictions

Observed PPI distribution:

Median 63

A high PPI score corresponds to a 
lower probability of being poor.

Predicted PPI distribution:

Median 63.3

Exploring and Interpreting Poverty Maps

Using the results obtained in this study, poverty maps are 
presented at varying national, regional and localized scales 
by using the cell tower geo-segmentation approach. Image 
Table 5 presents the mapping of predicted PPI poverty scores 
in Ghana at the country level. A total of 1,262 polygons are 
visualized, nationally. 

Shaded polygons are established using mobile network 
provider cell tower locations, where darker shades show 
estimates of low poverty incidence; lighter shades, higher 
incidence of poverty. With greater cell tower density to 
serve more densely-populated urban areas, polygon sizes 
become more granular, as do predictive score coverage areas. 

In this manner, poverty estimation is more granular at a 
neighborhood level in higher density urban areas; whereas 
in rural areas, polygons are far larger. Zooming-in on urban 
centers in Accra and Kumasi shows the granular nature of 
the polygons, whose geographic area becomes smaller as 
cell tower density increases. Many map areas do not have 
predicted poverty levels (they are filled with a gray checked 
pattern): satellite images were not available country-wide at 
the resolution used; some areas faced processing errors that 
resulted in incomplete mapping; and as already discussed, only 
areas around cell towers attempted generating estimates, as 
computing several million images far exceeded the coverage 
of the network and survey data.
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Image Table 5: Satellite image-based PPI Prediction Mapping – Ghana

Map of entire country

Zoom into Accra 
Municipality

Zoom into 
Center of Kumasi

This Image Table visualizes the mapping tool developed for this project, providing shared coverage zones corresponding to 
the Voronoi polygon segmentation approach.  The sequence of images illustrate the ability to zoom-in from country-level to 
neighborhood-level coverage areas.  Here, PPI scores are depicted (darker is higher PPI score prediction, meaning higher wealth; 
lighter non-checked areas show low scores and therefore increased predicted prevalence of poverty).  As discussed elsewhere, the 
tile-based mapping approach enables layering multiple indicators of interest.

In terms of satellite imaging, urban areas are also more 
feature-rich in terms of buildings and roads, while in rural 
areas there may be more grasslands or uninhabited areas. Yet, 
urban areas also have much more demographic diversity in 
smaller areas, meaning neighboring households may be less 
similar in terms of welfare, despite sharing common visual 
features in a satellite image.

Visually exploring urban areas in Accra helps to make this 
point, while also illustrating the application (and challenges) 
of the poverty estimation models combined with maps 
segmented by the Voronoi estimation zones. The Image 
Table 6 depicts one of Accra’s wealthiest areas, serving as an 
empirical example of high-income visual features.



18

Image Table 6: Empirical Observations Comparing Poverty Scores and Images – Urban Wealth

Map: https://earth.google.com/web/@5.65555391,-0.111776,33.4206017a,314.48224383d,35y,0h,0t,0r

Trasacco Valley is recognized as one of Accra’s wealthy 
neighborhoods9. Selecting this area specifically on the 
predicted poverty map shows above-average PPI predicted 
scores, although only modestly so. This clearly shows 
limitations of the model’s accuracy, with a predicted score 
of 64.7 – an improbably low prediction corresponding to 43 
percent below $5.00/day. This sort of discrepancy may likely 
be an artifact of the spatial boosting approach combined with 
satellite imaging. Zooming-in on the coverage area, multi-
story single family houses are seen, lawns and swimming 
pools, which are expected to correlate with near-zero poverty 
for the coverage area.

One of the poorest zones predicted within the greater 
Accra area, depicted below (Image Table 7), includes the 
Northwest section of the Abelemkpe, a relatively wealthier 

neighborhood10; and also, the Southern area of Achimota, 
which notably includes the slum area of Abofu (see lightly-
shaded low-income estimated coverage area, highlighted with 
an orange-border polygon area). A satellite image snapshot of 
the zone covered by Google Maps shows visual differences in 
the housing density and construction of buildings, particularly 
clustered around the crossing highways. Identified through 
the predictive satellite mapping, the predicted PPI score in this 
area is 53--on the lower end of the distribution of values across 
the country (see orange line in distribution chart). With a mix 
of more affluent housing stock and slum areas, this score 
indicates probability of 68 percent of denizens in this area to 
fall below the $5.00/day poverty line.

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
10

P
ro

p
o
rt

io
n

PPI Predictions

23 36 49 62 76 89

Selected: 64.7

Mean: 62.5

Median: 63.3

Distribution of: PPI Predictions

9 https://www.africa.com/a-million-gets-you-in-ghana/
10 https://en.wikipedia.org/wiki/Neighborhoods_of_Accra
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Image Table 7: Empirical Observations Comparing Poverty Scores and Images – Urban Poverty 1

Map: https://earth.google.com/web/@5.61074734,-0.2240724,20.66296749a,1087.02950268d,35y,0h,0t,0r

Another example of a poorer neighborhood in Accra is depicted 
below in Image Table 8 at different zoom levels. Chorkor is 
a fishing village at the coastline in Accra. The corresponding 
satellite image shows a densely populated neighborhood at 
the coastline in Accra. It is a fishing village struggling with 
poor sanitation, access to water and power infrastructure, 
and waste management. The predicted PPI score for this area 
is 55.1 which corresponds to a 60.3 percent likelihood for the 
population living there to fall below the $5.00/day poverty 
line.

Although the predicted poverty level for this area is at the 
lower end of the distribution poverty scores across the county 
(see distribution in Image 8), it is not as low as expected for a 
slum area known for its high levels of poverty and lower access 
to infrastructure. This result may be explained by a closer look 
at the Google Maps satellite snapshot. Apart from the slum 
area at the bottom half, the upper part of the image shows 
less dense housing structures surrounded by more greenery 
suggesting higher levels of wealth. Indeed, this upper part of 
the image shows a university and a hospital campus. 
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Both examples of neighborhoods presented above (Image 
Table 7 and 8) are areas where welfare levels were predicted 
solely based on the underlying satellite imagery. None of the 
survey data used for model training was collected in those 
areas. The fact that both wealthy and poor areas are covered by 
the polygons respectively, explains moderately low predicted 
poverty incidence and provides anecdotal evidence that the 
satellite model for PPI estimation aligns to some degree with 
observed characteristics.

These two examples also illustrate the complexity in 
generating granular neighborhood-level estimates, especially 
in more urban environments precisely because of the rapid 
changes that may occur between low- and high-income 
segments, the visual features that characterize them, 
and general lack of border boundaries (e.g., a political or 
administrative line).

Ultimately, the goal of this research is to explore the interplay 
of poverty and Digital Financial Services.  Image Table 9 shows 
how poverty heat maps can be meaningfully compared to 
layers of telephone and mobile money activity. Three metrics 
are selected for comparison:

• Map A.1 depicts the satellite-based predicted PPI scores for 
Ghana. Darker shades visualize higher scores in respective 
areas, which translate into lower predicted poverty 
incidence in those polygons. 

• Map B.1 visualizes call activity for users of a Ghanaian 
mobile network operator. The map shows gradients of 
telephone calls incoming to respective smaller areas. 
Darker areas depict relatively more calls received. 

• Map C.1 shows mobile money transaction activity. The 
map shows gradients of the total value of transfers that 
are being sent and received in a respective area. The higher 
the value of transfers per month, the darker the shade.

Image Table 8: Empirical Observations Comparing Poverty Scores and Images – Urban Poverty 2

Map: https://earth.google.com/web/@5.5334772,-0.23087813,18.66830879a,2254.39682943d,35y,0h,0t,0r
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Across the maps, the same polygon areas are shaded,11  
enabling the ability to directly layer transactional data atop 
poverty estimates. Moreover, as polygons are approximating 
mobile network operator service areas, insights are equally 
valuable to providers seeking a better understanding of 
consumer segments with respect to their service areas. 

Regarding call behavior and mobile money transaction 
activity, nationally, darker-shaded urban areas show increased 
activity, as would be expected. This is most pronounced for the 

mobile money activity layer as adoption levels are still largely 
lacking behind cell phone ownership. Zooming-in on urban 
areas (see for example Map B.2 zoomed into Accra in Image 
Table 9) shows again the granular nature of the polygons, 
whose geographic areas become smaller as cell tower density 
increases. As a result, these urban zones also show significant 
gradients of calling and mobile money activity between them 
at this level of resolution.

Image Table 9: Layering poverty predictions, telephone and mobile money activity in Ghana

Map A.1–Poverty Prediction 
(PPI score) (Lighter=Poorer)

Map A.2 – Zoom into Accra

Map B.1-Telephone Activity
(Number of Incoming Calls)

Map B.2 - Zoom into Accra

Map C.1-Mobile Money Activity
(Total Value of Transfers)

Map C.2- Zoom into Accra

11 Polygons with missing data are again filled with a gray checked pattern. Different reasons can explain missing data. No available high-resolution satellite 
imagery, processing errors or no recorded call or mobile money activity during given time period in respective polygon.



The predicted poverty incidence in the selected polygon is 
with an estimated 60.3 percent of the population living below 
the $5.00/day poverty line, which is an eight percentage point 
higher poverty rate than the median value in Ghana. But 
despite low welfare levels, the area still shows high levels of 
telephone activity. Across all call activity metrics, the values 
for the specific polygon are more than twice as high as the 
median values. In other words, the cell tower in this area 
hosts a highly active userbase, as compared to tower and user 
communities elsewhere. 

Regarding mobile money activity, results differ depending 
on the metric. Mobile money activity in the area is higher 
than the countrywide median with respect to the volume of 
cash-outs and mobile money transfers; whereas the average 
cash-in amount is lower than in the majority of other polygons 
across the country.

Overall, this shows that in this specific area, a community 
with higher poverty prevalence also shows much higher 
telephone usage; and similar mobile money activity patterns 
(slightly biased toward cash-out, suggesting net inflows into 
the community).

As previously observed, this neighborhood shows a mix 
of features that expect to correlate with higher and lower 
poverty prevalence (eg., slum areas adjacent to areas with 
single family homes and lawns).  It is impossible to identify 
wealth characteristics at the individual user level to know 
if the telephone and mobile money patterns are driven by 
wealthier demographics or poorer demographics or evenly 
distributed across all users.  However, what is known – and 
what is important from the perspective of both providers and 
policy makers is this: the community depicted here shares a 
common infrastructure.

To illustrate the feature layering approach with a concrete 
example, one area that was discussed before (capturing parts 
of the poor village of Chorkor in Accra) is again highlighted 
with orange boarders (Image Table 9). Table 2 lists the 
corresponding poverty, telephone, and mobile money activity 
metrics for the selected areas, comparing them to the median 

values across locations in Ghana. By definition each Voronoi 
polygon constitutes a geographic area with a single cell tower 
at its geometric middle. Therefore, values may be interpreted 
in terms of volume of activity per tower per month. 
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METRIC
EXAMPLE POLYGON ZONE 

(PART OF CHORKOR)
GHANA MEDIAN

Poverty Statistics

Predicted PPI Score 55.1 63.3

$5.00/day poverty rate - PPI interpretation 60.3% 52.1%

$1.90/day poverty rate - PPI interpretation 3.6% 1.5%

Telephone Activity

Number of outgoing calls per month (per month and user) 104 47.5

Number of incoming calls (per month and user) 41 15

Outgoing call duration (total tower minutes per month) 129 hours 69 hours

Incoming call duration (total tower minutes per month) 61 hours 29 hours

Number of incoming SMS per month (total per tower) 26,600 7,900

Number of outgoing SMS per month (total per tower) 81,000 39,000

Mobile Money Activity

Mobile money transfer (average amount per month) $21   $19.5 

Mobile money cash in (average amount per month) $13 $15 

Mobile money cash out (average amount per month) $17 $16 

Table 2: Predicted Poverty Statistics, Telephone and Mobile Money Activity (per tower per 
month) in Chorkor
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Telephone statistics are reported in terms of the traffic served 
by the tower at the geometric center of the polygon; cash-in 
and cash-out statistics are similarly reported in terms of the 
tower that intermediated the agent float balances to facilitate 
the service transaction. Consequently, any commercial or 
developmental interventions designed to expand financial 
access will reach communities that access those services 
via this shared infrastructure.  It is therefore meaningful to 
articulate the reach of financial services with respect to the 
demographic make-up of the communities to share the 
“home” network tower in their neighborhood.

The Chorkor neighborhood discussed here was selected 
simply by having a low-scoring PPI prediction for the sake 
of exemplifying a layered analytic approach between 
poverty models, GSM and DFS activity.  Overall, a refined 

computational approach that explores relationships among 
these types of data would identify “hot spots” of interest 
according to specific strategic interests for providers or 
policy-makers. Digital financial service providers and donors 
might use the layering approach to compare even static or 
slowly changing poverty baseline estimates with a variety of 
different indicators that help to monitor and identify areas 
for targeted interventions to reduce poverty and to increase 
financial inclusion. Remittance rates as well as other metrics 
of (net) financial inflows and outflows of neighborhoods, and 
especially population numbers that better estimate financial 
reach and micro-market sizing, are interesting indicators for 
layering atop of poverty rates.
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Lessons for Estimating Welfare with Satellite Imagery 
and Call Detail Records

It is necessary to measure welfare and poverty levels regularly, 
at high spatial resolution, at high temporal frequency, and at 
low cost. The increasing availability of day- and night-time 
satellite images and powerful deep learning algorithms has 
introduced new methods to predict poverty and welfare levels. 
This research aimed to further these methods, specifically by 
increasing the granularity of analysis to smaller areas. 

Overall, the study finds that it is possible to identify 
meaningful welfare estimates at neighborhood-level 
resolution. However, these estimates are likely to lack 
precision. A joint spatial/satellite model provides the 
highest explanatory power, which combined interpolated 
geo-marked survey data with machine vision feature 
identification. This demonstrates that there are components 
of estimated wealth that are detectable through satellite 
imagery. While ground surveys are still necessary to develop 
country-specific models, adding remote-sensing information 
can reduce the sample sizes needed for detailed poverty 
estimation. 

The following are key lessons learned from this study about 
different data sources, methods, and challenges depending 
on context and targeted levels of granularity:

1. Evaluating welfare at neighborhood levels and with high 
spatial resolution may be valuable when lower levels 
of precision are acceptable. A rough understanding of 
income can meaningfully segment geographic areas that 
are below (or above) specific poverty threshold, such as 
in this case where poor versus not-poor can characterize 
neighborhoods or provide estimators for service reach to 
demographic segments. More so, when rough estimates 
can help to describe highly variable wealth demographics 
among neighbors in densely populated areas, it may be 
possible to approximate general poverty preponderance 
within that neighborhood, rather than a specific per-
household value.

2. Poverty prediction at the level of Voronoi polygon-based 
cell tower locations allows small area welfare estimation 
in urban environments. Predicting poverty at lower than 
regional levels raises the question of how to segment 
space – simply, where do boundaries exist? Political 
or map boundaries may or may not exist in a national 
context, especially for smaller towns. More importantly, 
how political boundaries are drawn is unlikely to reliably 
characterize demographic features of people who 
live within that zone. Using cell towers to segment 
geographies is beneficial, as the Voronoi polygon approach 
groups populations in terms of proximity to nearest 

tower12. It is reasonable to assume that tower density is 
proportional to population density (or at least provider 
subscriber density).  That is, providers are incentivized to 
put more towers where increased service is need. Doing 
so refines coverage polygons into smaller geographic 
spaces, importantly characterized by the people using 
the shared access point. The area defined by the Voronoi 
polygon therefore describes the DFS usage statistics of 
the denizens since the tower intermediates transactions 
performed by users and agents.

3. Daytime satellite imagery improves poverty prediction, 
but caveats remain. Nightlight satellite imagery can 
provide baseline estimates for regional poverty, but 
they are less useful in rural areas that do not have 
much variation or nightlight signals due to lower levels 
of electrification. Daylight satellite imagery provides 
a better alternative in many cases, although high-
resolution imagery is not always available for all regions 
in a country and individual high-resolution satellite 
images are unlikely to have uniformly distributed 
features that carry meaningful signals of poverty or 
wealth. Enough variation in wealth exists across the 
visual space to make wealth estimation with day time 
satellite imagery difficult without a robust ability to 
detect and identify the features that characterize the 
visual space. There is room for ample improvement for 
granular level poverty estimation, especially for urban 
neighborhoods.  In this study, higher R-squared values 
for rural Uganda are due to the relatively lower rate of 
change across adjacent satellite images. Urban Ghana’s 
rapid feature changes across smaller geographic space 
results in fewer salient features (or conflicting features) 
in the visual space.  Here, further research might focus 
on specialized feature detection, such as models that 
can detect cars, prominent urban characteristics and 
other indicators of wealth.  

In the course of this research, it was conjectured that additional 
feature detection research might prioritize identifying features 
that correspond to visually-identifiable features of poverty 
survey tools.  Specifically, the PPI methodology uses some 
statistical measures that have strong visual determinants 
(such as a building’s roof material, or whether there is an 
outdoor latrine).  While a challenging problem to solve, it 
is nevertheless reasonable to train a visual model to see a 
thatch roof or metal roof or tile roof, for example, and perhaps 
recognize features like community washrooms or cisterns 
for potable water.  Whereas poverty survey tools driven by 
consumption data, ownership or household expenditure 
provide less direct opportunity to “see” these types of features 
in the visual space and interpret them accordingly.

Discussion

12 Cell tower location data is available publicly or may be purchased by independent organizations that map infrastructure locations, globally, such as 
OpenCellID (https://www.opencellid.org/).
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An area of future research might therefore seek to train visual 
models specifically to recognize observable features present in 
PPI (or other methods) to improve prediction accuracy.

4. Spatial boosting is particularly helpful to improve models 
for rural poverty estimation. The ostensible goal of using 
remote-sensing to estimate poverty is to reduce the 
time and expense of ground surveys. This study found 
that using spatial boosting helps to address this, as 
meaningful estimates can be inferred for non-surveyed 
image locations by weighting surveyed observations 
from nearest-neighbors. This approach was found to be 
more effective in rural areas that are less likely to have 
substantial variations in welfare over short distances. 
Whereas in urban areas, large disparities of wealth were 
observed among neighbors, posing a significant challenge 
for training machine vision models. 

5. Representative sampling may not meaningfully overlap 
with provider data. This study also tried to predict poverty 
levels in neighborhoods with call activity data, expecting 
randomly selected survey respondents to be sufficiently 
represented in provider data to model CDR usage and 
wealth demographics. For both countries, the survey 
results effectively showed that providers had relatively low 
market share in the enumeration zones. Although results 
are presented in Table 1 for the sake of completeness, there 
is little interpretive value due to very low coincidence 
between CDR users and survey respondents. Therefore, 
future similar research should conduct minimal baseline 
surveys to understand general market share when 
attempting to use provider data and then design the 
full survey to over-sample in a statistically controllable 
manner to ensure adequate coincidence between data 
sets. 

6. Broad-spectrum representative ground-truth survey 
data is essential for training poverty estimation models. 
Breadth here implies that ground-truth welfare data 
encompasses the range of economic well-being within 
the population. Data should come from households with 
sufficient geographical dispersion so that the number 
of areas they fall in are high enough to train machine 
learning models if the variance is too small. Additionally, 
breadth also implies that images selected also encompass 
the range of buildings, roads, fields, farms and relevant 
features that are representatively associated with the 
spectrum of welfare.  The variation should ensure sufficient 
feature capture to identify and differentiate a wealthy 
household’s manicured lawn from a poorer household’s 
adjacent pasture, for example; equally for urban areas, 
to ensure that the variety of visual features are captured 
along with the variety of wealth segments that may 
correlate with those features.  This problem was evident 
in this study’s focus in rural Uganda, particularly since (by 
design) surveys focused on the poorest households, but 
this also resulted in a relative lack of wealthy households 
against which to compare and train models.

Application of Poverty Estimation Findings – Financial 
Inclusion and Beyond

Research shows that telephone usage13 and increased social 
network size14 are strong predictors for active uptake and use of 
Digital Financial Services.  Moreover, Digital Financial Services 
boost financial inclusion and contribute to poverty reduction 
and improved livelihood indicators.  DFS tend to be adopted 
first among higher income demographics, particularly urban 
youth. They scale by diffusing from early adopters and are likely 
to grow along remittance corridors or social networks (such 
as urban laborers who send money home to families in rural 
areas).15 Identifying these corridors is key, and normalizing the 
use of DFS is a means of scaling financial inclusion. Tracking 
financial flows into (or out of) areas with low-income welfare 
estimates may help to monitor the reach of financial inclusion 
and help target areas of greatest need. 

Given that DFS can play a significant role in diminishing poverty, 
it is important to be able to accurately identify locations 
where the poor live for the purpose of deploying targeted 
financial inclusion strategies, as well as for monitoring the 
use of financial services, and observing the impact they have 
on the population. Current national survey methods are slow 
and costly, meaning that observing and measuring reach and 
change is likely to take place on multi-year time lines. Even 
techniques that employ remote-sensing perfectly, while less 
expensive, may also be slow to observe poverty changes. 
However, indicators of financial empowerment represented 
through provider data change much faster, at the rate of 
usage and uptake. 

Layering heat maps of poverty, telephone usage and 
financial activity

Financial inclusion insights can therefore be obtained 
from comparing different data layers of telephone usage, 
financial transaction activity and poverty levels to deepen the 
understanding of how they are interconnected. A base layer 
of poverty estimates is fundamental to drive these types of 
insights, which can benefit providers and policy makers alike.

The maps presented in this report depict single-variable layers 
to illustrate the approach. But further research is necessary to 
computationally aggregate population, income and financial 
activity estimates to quantify the reach and scale of financial 
inclusion meaningfully at the national-level and at a more 
granular scale. Population layers are also critical to further 
this approach and should be considered equally in further 
research.

13 IFC 2016; Blumenstock et al. 2015. 
14 Mattson and Stuart 2018 
15 IFC et al. 2017, Aga and Martinez Peria 2014
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Increasing impact by identifying areas of biggest need 
and largest reach

This research finds that satellite imaging can be used to 
meaningfully segment welfare levels at neighborhood-
level granularity, although with relatively low precision. 
While these models offer only modest ability to explain the 
variation in wealth at granular levels, the ability to segment 
and rank poverty estimates can identify key areas to focus 
on, potentially advancing both commercial and financial 
inclusion strategies. Further, layering poverty estimate data 
can identify financial inclusion engagement opportunities 
(i.e., high cell coverage, low welfare) or populations that are 
particularly underserved that donors may seek to strategically 
target (i.e., low cell coverage, low welfare). In this manner, 
poverty estimates such as those obtained through this study 
can provide viable insights, despite the low precision of 
results: relative rank of welfare estimate is sufficient to provide 
directional information on financial inclusion targeting and 
reach, as does a categorical assessment of poverty prevalence 
above-or-below a given threshold.

Improved understanding of the financial behavior and 
needs of the bottom of the pyramid

Comparing poverty estimates with financial activity data 
helps to explore the scale of financial inclusion among the 
poorest income demographics. Providers seeking to better 
understand their own markets and customer demographics 
may gain insight into how services are used across geographies 
and income demographics. Such as whether money is sent 
and received from high-to-low predicted poverty areas or 
vice versa; or to quantify the volume of activity with respect 
to these parameters or relative per-capita metrics within 
coverage areas. Do these wealthier and poorer segments 
make phone calls to each other?  Do remittances flow from one 
to another? If so, to what degree? If not, how may remittance 
and communication corridors be described in terms of the 
demographic characteristics of sender and receiver zones? 

Application beyond financial inclusion

This study was more specifically focused on identifying 
poverty as a basis to compare and assess with respect to the 
prevalence of Digital Financial Services. However, the need 
for regular and granular poverty prediction with the help of 
satellite imagery and call activity data goes of course beyond 
financial inclusion. Layering publicly-available population 
information16 onto cell-tower location-based polygons allows 
for example to approximate estimates for how populations 
with different income demographics access Digital Financial 
Services. Applications in other domains is also possible, by 
assessing the proximity to access different services as well as 
the coverage density provided to populations within an area 
of interest. Other areas of application include for example 
agriculture and infrastructure. 

16 Such as Center for International Earth Science Information Network https://www.ciesin.columbia.edu/data/hrsl/ or WorldPop 
http://www.worldpop.org.uk/data/summary/?doi=10.5258/SOTON/WP00098
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Conclusion

Neighborhood level poverty estimation with satellite 
imagery is possible, although aided significantly by spatial 
boosting techniques that draw on traditional survey data.  
Combined, the coverage of surveys is effectively increased 
substantially, enabling smaller sample sizes to yield more 
information.  While the precision of poverty estimates is 
limited, the ability to segment and rank geospatial areas 
in terms of welfare is nevertheless insightful. Further work 
is needed to refine the models developed in this study and 
to develop research of this nature into insights for service 
providers. However, the basic building blocks are here to 
start using them. Even directional information on estimates 
of wellbeing can help to direct better understanding of 
financial inclusion reach. 

The ability to map small area poverty estimates and to 
combine them with layered financial transaction data, 
as explored in this study, provides opportunities for 
development professionals and Digital Financial Services 
providers alike to identify and quantify engagement, 
particularly among the poorest individuals. Equally, to 
identify opportunities where high engagement on telephone 
channels or other demographic characteristics may signal 
opportunities to strategically engage underserved markets 
that are likely to adopt and benefit from improved services.
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