Harmonization...What Else? The Role for International Regulatory Agreements

Giovanni Maggi Yale University, FGV EPGE, and NBER Monika Mrázová

University of Geneva, CEPR, and CESifo

IFC Flagship Conference January 23, 2023

DEEP INTEGRATION

Trade agreements

DEEP INTEGRATION

Controversy

"This is why harmonisation risks lowering our standards to the lowest common denominator. Again, harmonisation was a demand of big business that European trade negotiators included with little changes into the regulatory cooperation chapters of CETA and TTIP."

Corporate Europe Observatory (2017)

INTRODUCTION 000000	Basic model 000	One-way trade 000000000000000	Intra-industry trade 00000	Conclusion 0

Benefits versus costs of regulatory diversity

INTRODUCTION 000000	Basic model 000	One-way trade 000000000000000	Intra-industry trade 00000	Conclusion 0

Benefits versus costs of regulatory diversity

INTRODUCTION 000000	Basic model 000	One-way trade 000000000000000	Intra-industry trade 00000	Conclusion 0

Benefits versus costs of regulatory diversity

INTRODUCTION	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

Benefits versus costs of regulatory diversity

► How does this tradeoff affect Nash vs. cooperative eq?

INTRODUCTION	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

Benefits versus costs of regulatory diversity

- ► How does this tradeoff affect Nash vs. cooperative eq?
- Costs of regulatory diversity:

"... usually a *fixed cost*. You pay for this certification once from time to time, and this cost is not related to the volume traded." (Lamy, 2015)

INTRODUCTION 000000	Basic model 000	One-way trade 0000000000000000	Intra-industry trade 00000	Conclusion 0

Main questions

What is the role of international regulatory agreements?

Does non-cooperative behavior lead to diversity when harmony is efficient, or vice-versa? And if so, why?

MAIN QUESTIONS

- What is the role of international regulatory agreements?
 - Does non-cooperative behavior lead to diversity when harmony is efficient, or vice-versa? And if so, why?
- Political economy: how does lobbying affect the regulatory regime in the non-cooperative and cooperative scenarios?
 - Pop Critique: big firms push for harmonization because it serves their interests, at the expense of general welfare

INTRODUCTION 000000	Basic model 000	One-way trade 000000000000000	Intra-industry trade 00000	Conclusion 0

MAIN TAKEAWAYS

INTRODUCTION	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

MAIN TAKEAWAYS

- ► (Inefficient) Harmony may arise non-cooperatively
 - ...and agreement may serve to diversify

INTRODUCTION	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

MAIN TAKEAWAYS

- (Inefficient) Harmony may arise non-cooperatively
 ...and agreement may serve to diversify
- With intra-industry trade, agreements may have a pure "coordination" role
 - ...and might help govs coordinate on diversity regime

INTRODUCTION 000000	Basic model 000	One-way trade 000000000000000	Intra-industry trade 00000	Conclusion 0

Main takeaways

- (Inefficient) Harmony may arise non-cooperatively
 ...and agreement may serve to diversify
- With intra-industry trade, agreements may have a pure "coordination" role
 - ...and might help govs coordinate on diversity regime
- Lobbying makes harmonization more likely
 - In this case harmonization may decrease welfare
 - But agreements per se are not the problem

INTRODUCTION	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

Related literature

- "Old" vs "new" trade agreements: Grossman, McCalman and Staiger (2021)
 - Semi-fixed costs (product specification costs)
 - Free entry, no political economy
- Protectionist role of standards in a noncooperative scenario: Fischer and Serra (2000), Suwa-Eisenmann and Verdier (2002)
- Regulatory cooperation without fixed costs of regulatory diversity: Costinot (2008), Maggi and Ossa (2021), Parenti and Vannoorenberghe (2022)
- Quantification of welfare effects of "National Treatment" rule for standards: Mei (2021)
- ▶ Network effects: e.g. Farrell and Klemperer (2007)

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	•00	000000000000000	00000	0

► Two countries, Home and Foreign (*)

symmetric in size and consumer preferences

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	•00	000000000000000	00000	0

► Two countries, Home and Foreign (*)

symmetric in size and consumer preferences

▶ Partial equilibrium approach → focus on a single industry

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	•00	0000000000000000	00000	0

- ► Two countries, Home and Foreign (*)
 - symmetric in size and consumer preferences
- ▶ Partial equilibrium approach \rightarrow focus on a single industry
- ▶ The good is vertically differentiated, e.g. in terms of its "dirtiness," indexed by $e \in [0, \infty)$

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	•00	0000000000000000	00000	0

- ► Two countries, Home and Foreign (*)
 - symmetric in size and consumer preferences
- ▶ Partial equilibrium approach \rightarrow focus on a single industry
- ▶ The good is vertically differentiated, e.g. in terms of its "dirtiness," indexed by $e \in [0, \infty)$
- ▶ Local consumption externality, worse if *e* is higher

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	•00	0000000000000000	00000	0

- ► Two countries, Home and Foreign (*)
 - symmetric in size and consumer preferences
- ▶ Partial equilibrium approach \rightarrow focus on a single industry
- ▶ The good is vertically differentiated, e.g. in terms of its "dirtiness," indexed by $e \in [0, \infty)$
- Local consumption externality, worse if *e* is higher
 - Consumers are atomistic and get the same utility regardless of *e*, so demand depends only on price

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	•00	0000000000000000	00000	0

- ► Two countries, Home and Foreign (*)
 - symmetric in size and consumer preferences
- ▶ Partial equilibrium approach \rightarrow focus on a single industry
- ▶ The good is vertically differentiated, e.g. in terms of its "dirtiness," indexed by $e \in [0, \infty)$
- Local consumption externality, worse if e is higher
 - Consumers are atomistic and get the same utility regardless of *e*, so demand depends only on price
- Marginal cost of production is decreasing in the dirtiness of the good: c'(e) < 0</p>

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	•00	0000000000000000	00000	0

- ► Two countries, Home and Foreign (*)
 - symmetric in size and consumer preferences
- ▶ Partial equilibrium approach \rightarrow focus on a single industry
- ▶ The good is vertically differentiated, e.g. in terms of its "dirtiness," indexed by $e \in [0, \infty)$
- Local consumption externality, worse if e is higher
 - Consumers are atomistic and get the same utility regardless of *e*, so demand depends only on price
- Marginal cost of production is decreasing in the dirtiness of the good: c'(e) < 0</p>
- Zero trade costs

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	0000000000000000	00000	0

Two scenarios

- A single firm at Home \rightarrow *one-way trade*
- ► Cournot duopoly with symmetric firms → *intra-industry trade* à la Brander-Krugman

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	00●	0000000000000000	00000	0
Regulatio	DN			

Home and Foreign govs set *exact* product standards for the good sold in the local market (*e* and *e** respectively)

Introduction	BASIC MODEL	One-way trade	Intra-industry trade	Conclusion
000000	00●	0000000000000000	00000	0
Regulati	ON			

- Home and Foreign govs set *exact* product standards for the good sold in the local market (*e* and *e** respectively)
- No trade taxes and no discrimination in standards

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	00●	0000000000000000	00000	0
REGULATI	ON			

- Home and Foreign govs set *exact* product standards for the good sold in the local market (*e* and *e** respectively)
- No trade taxes and no discrimination in standards
- ▶ The firm incurs a fixed cost *F* for each supplied variety:

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	0000000000000000	00000	0
Regulatio	N			

- Home and Foreign govs set *exact* product standards for the good sold in the local market (*e* and *e** respectively)
- No trade taxes and no discrimination in standards
- ▶ The firm incurs a fixed cost *F* for each supplied variety:
 - If e = e*, firm incurs F whether it serves one or both markets

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	00●	0000000000000000	00000	0
Regulatio	N			

- Home and Foreign govs set *exact* product standards for the good sold in the local market (*e* and *e** respectively)
- ► No trade taxes and no discrimination in standards
- ▶ The firm incurs a fixed cost *F* for each supplied variety:
 - If e = e*, firm incurs F whether it serves one or both markets
 - If $e \neq e^*$, the firm incurs *F* for each market served

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	00●	00000000000000000	00000	0
Regulati	ON			

- Home and Foreign govs set *exact* product standards for the good sold in the local market (*e* and *e** respectively)
- No trade taxes and no discrimination in standards
- ▶ The firm incurs a fixed cost *F* for each supplied variety:
 - If e = e*, firm incurs F whether it serves one or both markets
 - If $e \neq e^*$, the firm incurs *F* for each market served
- Possible interpretation:
 - Certification/conformity assessment costs
 - Information costs, specification costs

Introduction 000000	Basic model 000	One-way trade •0000000000000000	Intra-industry trade 00000	Conclusion 0

$$\tilde{W}(e, e^*) = CS(e) - \alpha E(e) + \pi(e) + \pi(e^*) - n(e, e^*)F$$

Introduction 000000	Basic model 000	One-way trade •000000000000000	Intra-industry trade 00000	Conclusion 0

$$\tilde{W}(e, e^*) = CS(e) - \alpha E(e) + \pi(e) + \pi(e^*) - n(e, e^*)F$$

► *CS*: consumer surplus (in reduced form)

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	•000000000000000	00000	0

$$\tilde{W}(e, e^*) = CS(e) - \alpha E(e) + \pi(e) + \pi(e^*) - n(e, e^*)F$$

- ► *CS*: consumer surplus (in reduced form)
- *E*: local consumption externality (in reduced form)

• e.g. an increasing function of total pollution $e \cdot d(p(e))$

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	•0000000000000000	00000	0

$$\tilde{W}(e, e^*) = CS(e) - \alpha E(e) + \pi(e) + \pi(e^*) - n(e, e^*)F$$

- ► *CS*: consumer surplus (in reduced form)
- *E*: local consumption externality (in reduced form)
 - e.g. an increasing function of total pollution $e \cdot d(p(e))$
- *α* captures the weight that Home attaches to this externality

Introduction 000000	Basic model 000	One-way trade •00000000000000	Intra-industry trade 00000	Conclusion 0

$$\tilde{W}(e, e^*) = CS(e) - \alpha E(e) + \pi(e) + \pi(e^*) - n(e, e^*)F$$

- ► *CS*: consumer surplus (in reduced form)
- *E*: local consumption externality (in reduced form)
 - e.g. an increasing function of total pollution $e \cdot d(p(e))$
- *α* captures the weight that Home attaches to this externality
- π(e) and π(e*) are the profits made in the Home and Foreign markets respectively

Introduction 000000	Basic model 000	One-way trade ●000000000000000	Intra-industry trade 00000	Conclusion 0

$$\tilde{W}(e,e^*) = CS(e) - \alpha E(e) + \pi(e) + \pi(e^*) - n(e,e^*)F$$

- CS: consumer surplus (in reduced form)
- *E*: local consumption externality (in reduced form)
 - e.g. an increasing function of total pollution $e \cdot d(p(e))$
- *α* captures the weight that Home attaches to this externality
- π(e) and π(e*) are the profits made in the Home and Foreign markets respectively
- *n* is the number of supplied varieties
| Introduction
000000 | Basic model
000 | One-way trade
•000000000000000 | Intra-industry trade
00000 | Conclusion
0 |
|------------------------|--------------------|-----------------------------------|-------------------------------|-----------------|
| | | | | |
| | | | | |

Home welfare

$$\tilde{W}(e, e^*) = CS(e) - \alpha E(e) + \pi(e) + \pi(e^*) - n(e, e^*)F$$

- CS: consumer surplus (in reduced form)
- *E*: local consumption externality (in reduced form)
 - e.g. an increasing function of total pollution $e \cdot d(p(e))$
- *α* captures the weight that Home attaches to this externality
- π(e) and π(e*) are the profits made in the Home and Foreign markets respectively
- *n* is the number of supplied varieties
 - If $e = e^*$ then n = 1

Introduction 000000	Basic model 000	One-way trade •00000000000000	Intra-industry trade 00000	Conclusion 0

Home welfare

$$\tilde{W}(e, e^*) = CS(e) - \alpha E(e) + \pi(e) + \pi(e^*) - n(e, e^*)F$$

- CS: consumer surplus (in reduced form)
- *E*: local consumption externality (in reduced form)
 - e.g. an increasing function of total pollution $e \cdot d(p(e))$
- *α* captures the weight that Home attaches to this externality
- π(e) and π(e*) are the profits made in the Home and Foreign markets respectively
- *n* is the number of supplied varieties
 - If $e = e^*$ then n = 1
 - If $e \neq e^*$ then n = 2

Introduction 000000	Basic model 000	One-way trade 000000000000000	Intra-industry trade 00000	Conclusion 0

Home's preferred standard

$$\tilde{W}(e,e^*) = \underbrace{CS(e) - \alpha E(e) + \pi(e) + \pi(e^*)}_{W(e,e^*)} - n(e,e^*)F$$

- W: Home welfare gross of fixed costs
 - Assume W is single-peaked in e
 - Home's "preferred" standard is $e_W = \arg \max W$

Introduction 000000	Basic model 000	One-way trade 000000000000000000000000000000000000	Intra-industry trade 00000	Conclusion 0

Home's preferred standard

$$\tilde{W}(e, e^*) = \underbrace{CS(e) - \alpha E(e) + \pi(e) + \pi(e^*)}_{W(e, e^*)} - n(e, e^*)F$$

W: Home welfare gross of fixed costs
Assume W is single-peaked in e
Home's "preferred" standard is e_W = arg max W

Total surplus (gross of fixed costs) arising in Home:

- $\blacktriangleright S(e) = CS(e) \alpha E(e) + \pi(e)$
- Surplus maximizing standard: $e_S = \arg \max S$

• Note:
$$e_W = e_S$$
 in this setting

Introduction 000000	Basic model 000	One-way trade 000000000000000	Intra-industry trade 00000	Conclusion 0

$$\tilde{W}^{*}(e^{*}) = W^{*}(e^{*}) = CS(e^{*}) - \alpha^{*}E(e^{*})$$

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

$$\tilde{W}^{*}(e^{*}) = W^{*}(e^{*}) = CS(e^{*}) - \alpha^{*}E(e^{*})$$

 α* captures the weight that Foreign attaches to the externality

Introduction 000000	Basic model 000	One-way trade 00000000000000	Intra-industry trade 00000	Conclusion 0

$$\tilde{W}^{*}(e^{*}) = W^{*}(e^{*}) = CS(e^{*}) - \alpha^{*}E(e^{*})$$

- α* captures the weight that Foreign attaches to the externality
- Foreign's "preferred" standard: $e_W^* = \arg \max_{a^*} W^*$

Introduction 000000	Basic model 000	One-way trade 00000000000000	Intra-industry trade 00000	Conclusion 0

$$\tilde{W}^{*}(e^{*}) = W^{*}(e^{*}) = CS(e^{*}) - \alpha^{*}E(e^{*})$$

- *α*^{*} captures the weight that Foreign attaches to the externality
- ► Foreign's "preferred" standard: $e_W^* = \arg \max_{e^*} W^*$

- ► Total surplus (gross of fixed costs) arising in Foreign:
 - $S^*(e^*) = CS(e^*) \alpha^* E(e^*) + \pi(e^*)$
 - Surplus maximizing standard: $e_S^* = \arg \max S^*$
 - Foreign does not care about Home firm's profits: $e_W^* < e_S^*$

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

PRODUCT-STANDARD-SETTING GAME

- Simultaneous move game:
 - Home chooses e to maximize \tilde{W}
 - Foreign chooses e^* to maximize \tilde{W}^*

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

Product-standard-setting game

- Simultaneous move game:
 - Home chooses *e* to maximize \tilde{W}
 - ▶ Foreign chooses e^{*} to maximize W̃^{*}
- ► How does the equilibrium outcome depend on:
 - *F*: cost of regulatory diversity
 - |α α*|: heterogeneity of "fundamental" preferences

Introduction 000000	Basic model 000	One-way trade 00000000000000	Intra-industry trade 00000	Conclusion 0

► Int'l externalities exerted by Foreign's choice of standard:

MODEL ONE-WAY TRADE	Intra-industry trade 00000	Conclusion 0
N	MODEL ONE-WAY TRADE	MODEL ONE-WAY TRADE INTRA-INDUSTRY TRADE

- ► Int'l externalities exerted by Foreign's choice of standard:
 - ▶ Baseline externality: tighter *e*^{*} reduces Home profits

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

- Int'l externalities exerted by Foreign's choice of standard:
 - ▶ Baseline externality: tighter *e*^{*} reduces Home profits
 - Positive "matching externality": given *e*, if Foreign chooses a matching *e** it reduces the Home firm's fixed cost

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

- Int'l externalities exerted by Foreign's choice of standard:
 - ▶ Baseline externality: tighter *e*^{*} reduces Home profits
 - Positive "matching externality": given *e*, if Foreign chooses a matching *e*^{*} it reduces the Home firm's fixed cost
- Home's choice of standard does not affect Foreign in this setting

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

- Int'l externalities exerted by Foreign's choice of standard:
 - ▶ Baseline externality: tighter *e*^{*} reduces Home profits
 - Positive "matching externality": given *e*, if Foreign chooses a matching *e*^{*} it reduces the Home firm's fixed cost
- Home's choice of standard does not affect Foreign in this setting
- The matching externality might suggest that an agreement should encourage harmonization. But this intuition is not quite correct...

Introduction 000000	Basic model 000	One-way trade 000000000000000	Intra-industry trade 00000	Conclusion 0

Home government reaction function

$$\max_{e} \tilde{W}(e, e^{*}) = W(e, e^{*}) - n(e, e^{*})F$$

$$e_W = rg\max_e W(e, e^*)$$

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	0000000000000000	00000	0

Foreign reaction function

$$\max_{e^*} \tilde{W}^*(e^*) = \max_{e^*} W^*(e^*) \qquad e^*_W = \arg\max_{e^*} W^*(e^*)$$

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	0000000000000000	00000	0

Nash equilibrium

 $\hat{\alpha}$: value of α^* such that *regulatory* preferences are the same: $e_W = e_W^*$

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	0000000000000000	00000	0

Nash equilibrium

 $\hat{\alpha}$: value of α^* such that *regulatory* preferences are the same: $e_W = e_W^*$

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	0000000000000000	00000	0

Nash equilibrium

 $\hat{\alpha}$: value of α^* such that *regulatory* preferences are the same: $e_W = e_W^*$

California/Brussels effect

- Do we observe spontaneous harmony in reality?
- Several studies have found evidence of the so-called "California" or "Brussels" effect: a tendency of product standards to ratchet upwards towards levels found in high-regulating countries
 - See for ex. Vogel (1995), Bradford (2019)

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	00000000000000000	00000	0

COOPERATIVE STANDARDS

Home and Foreign choose *e* and *e*^{*} to maximize joint welfare

$$\max_{e,e^*} [\tilde{W}(e,e^*) + \tilde{W}^*(e^*)] = \max_{e,e^*} [S(e) + S^*(e^*) - n(e,e^*)F]$$

Implicitly assumes international transfers available

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	0000000000000000	00000	0

COOPERATIVE STANDARDS

Home and Foreign choose *e* and *e*^{*} to maximize joint welfare

$$\max_{e,e^*} [\tilde{W}(e,e^*) + \tilde{W}^*(e^*)] = \max_{e,e^*} [S(e) + S^*(e^*) - n(e,e^*)F]$$

Implicitly assumes international transfers available

Efficient diversified standards:

$$e_S = rg\max_e S(e) = e_W$$
 and $e_S^* = rg\max_{e^*} S^*(e^*) > e_W^*$

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	00000000000000000	00000	0

COOPERATIVE STANDARDS

Home and Foreign choose *e* and *e*^{*} to maximize joint welfare

$$\max_{e,e^*} [\tilde{W}(e,e^*) + \tilde{W}^*(e^*)] = \max_{e,e^*} [S(e) + S^*(e^*) - n(e,e^*)F]$$

Implicitly assumes international transfers available

Efficient diversified standards:

$$e_S = \operatorname*{arg\,max}_e S(e) = e_W$$
 and $e_S^* = \operatorname*{arg\,max}_{e^*} S^*(e^*) > e_W^*$

▶ Harmonization is efficient iff there exists *e*_{*H*} such that:

$$S(e_S) + S^*(e_S^*) - F \le S(e_H) + S^*(e_H)$$

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	00000000000000000	00000	0

Cooperative equilibrium

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	00000000000000000	00000	0

Cooperative equilibrium

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	00000000000000000	00000	0

Cooperative equilibrium

• $\frac{|\alpha^* - \alpha|}{F}$ small \Rightarrow *Harmony*

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000000000000000000000000	00000	0

How cooperation affects the regulatory regime

► Harmonization (*H*) if

$$\begin{cases} \frac{|\alpha^* - \alpha|}{F} \\ \frac{|\alpha^* - \hat{\alpha}|}{F} \end{cases}$$

sufficiently small sufficiently large

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000000000000000000000000	00000	0

How cooperation affects the regulatory regime

Harmonization (H) if

 $\begin{cases} \frac{|\alpha^* - \alpha|}{F} & \text{sufficiently small} \\ \frac{|\alpha^* - \hat{\alpha}|}{F} & \text{sufficiently large} \end{cases}$

Diversification (D) if

 $\begin{cases} \frac{|\alpha^* - \alpha|}{F} & \text{sufficiently large} \\ \frac{|\alpha^* - \hat{\alpha}|}{F} & \text{sufficiently small} \end{cases}$

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000000000000000000000000	00000	0

How cooperation affects the regulatory regime

► Harmonization (*H*) if

 $\begin{cases} \frac{|\alpha^* - \alpha|}{F} & \text{sufficiently small} \\ \frac{|\alpha^* - \hat{\alpha}|}{F} & \text{sufficiently large} \end{cases}$

▶ Diversification (*D*) if

 $\begin{cases} \frac{|\alpha^* - \alpha|}{F} & \text{sufficiently large} \\ \frac{|\alpha^* - \hat{\alpha}|}{F} & \text{sufficiently small} \end{cases}$

 Otherwise cooperation maintains regime (*M_D*, *M_H*) and only changes standards *levels*

Political Economy: Non-cooperative equilibrium

Political Economy: Non-cooperative equilibrium

 $\hat{\alpha}_{\gamma=1}$ $\hat{\alpha}_{\gamma>1}$

- Home gov's objective under lobbying: $\tilde{W} + (\gamma - 1)(\pi + \pi^* - nF)$
- Foreign gov's objective as before
- Lobbying shifts down the spontaneous harmony region
 - Intuition: Home preferred standard gets looser, so â ↓

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000000	00000	0

Political Economy: Cooperative equilibrium

The agreement maximizes

Political Economy: Cooperative equilibrium

The agreement maximizes

 $\tilde{W}^w + (\gamma - 1)(\pi + \pi^* - nF)$

- Lobbying increases likelihood of cooperative harmony (under conditions)
 - Intuition: firm cares about *F*, not about the environment

The Pop Critique

• Intermediate $\frac{|\alpha - \alpha^*|}{F}$: the politically-pressured agreement does Harmony, while efficiency requires Diversity

The Pop Critique

- Intermediate $\frac{|\alpha \alpha^*|}{F}$: the politically-pressured agreement does Harmony, while efficiency requires Diversity
- In Brown, the agreement inefficiently harmonizes standards with γ > 1
 - The agreement can never inefficiently diversify
- Pop Critique may be right?
| Introduction | Basic model | One-way trade | Intra-industry trade | Conclusion |
|--------------|-------------|----------------|----------------------|------------|
| 000000 | 000 | 00000000000000 | 00000 | 0 |
| | | | | |

The problem may not lie in the agreement:

- The problem may not lie in the agreement:
 - Lobbying may lead to inefficient spontaneous harmony

- The problem may not lie in the agreement:
 - Lobbying may lead to inefficient spontaneous harmony
 - Lobbying reduces overlap between spontaneous harmony and efficient harmony regions
 - ...so lobbying reduces the likelihood of efficient spontaneous harmony

- The problem may not lie in the agreement:
 - Lobbying may lead to inefficient spontaneous harmony
 - Lobbying reduces overlap between spontaneous harmony and efficient harmony regions
 - ...so lobbying reduces the likelihood of efficient spontaneous harmony

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	•0000	0

Same setting as above, but different market structure

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	•0000	0

Same setting as above, but different market structure

Cournot duopoly with symmetric firms

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	0000000000000000	•0000	0

Same setting as above, but different market structure

Cournot duopoly with symmetric firms

Firms make symmetric profits π(e) in the Home market and π(e*) in the Foreign market

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	•0000	0

- Same setting as above, but different market structure
 - Cournot duopoly with symmetric firms
- Firms make symmetric profits π(e) in the Home market and π(e*) in the Foreign market
- ► Home and Foreign reaction functions are similar, but shifted because $\alpha \neq \alpha^*$

|--|

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	0000000000000000	00000	0

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion 0
000000	000	0000000000000000	00000	

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

The agreement doesn't tinker much with regulatory *regime*, unlike the monopoly case

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

- The agreement doesn't tinker much with regulatory *regime*, unlike the monopoly case
- For intermediate $|\alpha \alpha^*|/F$, the agreement *weakly* harmonizes (*H*) or diversifies (*D*)

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	0000000000000000	00000	0

- The agreement doesn't tinker much with regulatory *regime*, unlike the monopoly case
- For intermediate $|\alpha \alpha^*|/F$, the agreement *weakly* harmonizes (*H*) or diversifies (*D*)
- The agreement corrects standards *levels*, but...

Introduction	Basic model	One-way trade	Intra-industry trade	Conclusion
000000	000	000000000000000	00000	0

 ... if *F* relatively large and α close to α*, efficient standards are a Nash equilibrium, so agreement has a pure coordination role

Political economy

 Under lobbying, agreement may entail inefficient harmony

Political economy

- Under lobbying, agreement may entail inefficient harmony
- Recall: the agreement doesn't tinker much with the regulatory regime

Political economy

- Under lobbying, agreement may entail inefficient harmony
- Recall: the agreement doesn't tinker much with the regulatory regime
- So while lobbying may lead to inefficient harmony, the problem is not brought about by the agreement, it's already present in the non-coop scenario

Introduction 000000	Basic model 000	One-way trade 000000000000000	Intra-industry trade 00000	Conclusion

Conclusion

- The role of regulatory agreements depends crucially on whether trade is one-way or two-way in a given industry
- ► If trade is one-way:
 - Cooperation may promote harmony or diversity, and it always corrects standards levels
 - Under some conditions there is "spontaneous harmony" but the agreement encourages diversity
 - Under lobbying a harmonization agreement is more likely, and can reduce welfare (Pop Critique)
- ► If trade is intra-industry:
 - Agreements weakly change the regulatory regime
 - Under some conditions they play a *pure* coordination role
 - Lobbying can lead to inefficient harmonization, but it is not agreements *per se* that cause the problem.

Cost of regulatory diversity

"... is usually a *fixed cost*. You pay for this certification once from time to time, and this cost is not related to the volume traded." (Lamy, 2015)

Cost of regulatory diversity

"... is usually a *fixed cost*. You pay for this certification once from time to time, and this cost is not related to the volume traded." (Lamy, 2015)

Two types of fixed costs:

Cost of regulatory diversity

"... is usually a *fixed cost*. You pay for this certification once from time to time, and this cost is not related to the volume traded." (Lamy, 2015)

Two types of fixed costs:

▶ OECD (2017):

- 1. Information costs \rightarrow fixed or semi-fixed
- 2. Specification costs \rightarrow fixed or semi-fixed
- 3. Conformity assessment costs \rightarrow fixed

Product standard

Product standard

Conformity assessment procedure

Product standard

Conformity assessment procedure

Conformity assessment agency

Product standard

Conformity assessment procedure

Conformity assessment agency

Product standard

Conformity assessment procedure

Conformity assessment agency

Extensions 0000

Lobbying and Spontaneous Harmony

Harmony and Div are equally efficient iff

$$\gamma F = \underbrace{W(e_W) - W(e_W^*)}_L$$

- $\gamma \uparrow$ tilts the balance towards Harmony iff $\varepsilon_{L,\gamma} < 1$.
- Differentiating L with respect to γ and applying the envelope theorem yields:

$$\varepsilon_{L,\gamma} < 1 \Leftrightarrow \tilde{CS}(e_W) - \tilde{CS}(e_W^*) > 0$$
 where $\tilde{CS} = CS - \alpha E$

Lobbying and Cooperative Harmony

Harmony and Div are equally efficient if

$$\gamma F = max_{e,e^*}S^w - max_{e=e^*}S^w \equiv L$$
, where $S^w \equiv \tilde{CS}^w + \gamma \pi^w$

- $\gamma \uparrow$ tilts the balance towards Harmony iff $\varepsilon_{L,\gamma} < 1$
- Applying envelope thm and simplifying: $\varepsilon_{L,\gamma} < 1$ iff $\tilde{CS}_{Div}^{w} > \tilde{CS}_{Harm}^{w}$ (world consumers better off under Div)

FOCs:
$$\tilde{CS}'(e_s) + \gamma \pi'(e_s) = 0$$
 and $\tilde{CS}^{*'}(e_s^*) + \gamma \pi'(e_s^*) = 0$

► If $\pi'(e)$ is diminishing and e_H not too far from $\frac{e_S + e_S^*}{2}$, the higher-*e* country has lower marginal consumer loss, hence moving standards toward each other reduces \tilde{CS}^w , and therefore $\varepsilon_{L,\gamma} < 1$

DUOPOLY

- ► Cournot duopoly with symmetric firms → intra-industry trade à la Brander-Krugman
- Firms make symmetric profits π(e) in the Home market and π(e*) in the Foreign market

$$\tilde{W} = \underbrace{CS(e) - \alpha E(e) + \pi(e) + \pi(e^*)}_{W(e,e^*)} - n(e,e^*)F$$

$$\tilde{W}^* = \underbrace{CS(e^*) - \alpha^* E(e^*) + \pi(e^*) + \pi(e)}_{W^*(e^*, e)} - n(e, e^*)F$$

GOVERNMENT REACTION FUNCTIONS

► Home and Foreign reaction functions are similar, but shifted because $\alpha \neq \alpha^*$

COOPERATIVE EQUILIBRIUM

Qualitatively similar as in monopoly case

- International policy externalities: foreign-profit and matching externalities
 - Similar to monopoly case, but foreign-profit externality is two-ways, and "matching externality" is more symmetric
- Again, cursory intuition might suggest regulatory harmony is "under-provided" in non-cooperative scenario, but in general this is not the case.
- Overlay Nash and cooperative parabolas using numerical approach: assume constant-elasticity *c*(*e*); consider both linear and constant-elasticity *d*(*p*).
 - Analytical work still in progress

The agreement doesn't tinker much with regulatory *regime*, unlike the monopoly case

- The agreement doesn't tinker much with regulatory *regime*, unlike the monopoly case
- For intermediate $|\alpha \alpha^*|/F$, the agreement can at best help govs *coordinate* on the efficient regime (*H* or *D*)

- The agreement doesn't tinker much with regulatory *regime*, unlike the monopoly case
- For intermediate $|\alpha \alpha^*|/F$, the agreement can at best help govs *coordinate* on the efficient regime (*H* or *D*)
- The agreement corrects standards *levels*, but...

 ...if *F* relatively large and α close to α*, efficient standards are a Nash equilibrium, so agreement has at best a pure coordination role

Political economy: Cooperative equilibrium

Political economy: Cooperative equilibrium

- --- A: $\gamma = 1 ---- A : \gamma > 1$ α^* DivHarmony 0 Div.....
- Lobbying expands the cooperative harmony region

Political economy: Cooperative equilibrium

- Lobbying expands the cooperative harmony region
 - Intuition: as in monopoly case, plus, as γ ↑ govs' objectives become more aligned with profits and with each other

Political economy: Non-cooperative equilibrium

Political economy: Non-cooperative equilibrium

— N: $\gamma = 1$ ----- N: $\gamma > 1$

 Unlike the monopoly case, lobbying also makes spontaneous harmony more likely

The Pop Critique

 Under lobbying, agreement may entail inefficient harmony

The Pop Critique

- Under lobbying, agreement may entail inefficient harmony
- Recall: the agreement doesn't tinker much with the regulatory regime

The Pop Critique

- Under lobbying, agreement may entail inefficient harmony
- Recall: the agreement doesn't tinker much with the regulatory regime
- So while lobbying may lead to inefficient harmony, the problem is not brought about by the agreement, it's already present in the non-coop scenario

Complete policy instruments

- Suppose there are transfers between both governments and the Home firm
 - Nash equilibrium will be efficient
 - If the Foreign government can write a perfect contract with the Home firm, this is a perfect substitute for an international contract between Home and Foreign governments
 - Reminiscent of the efficiency of first-degree price discrimination
- There is a role for international regulatory cooperation only in a second-best world where governments do not have a complete set of policy instruments

Firm will serve a given market if it can break even

Firm will serve a given market if it can break even

- ► If $e \neq e^*$,
 - Firm serves Home market iff $e \ge \hat{e}(F)$
 - Firm serves Foreign market iff $e^* \ge \hat{e}(F)$

Firm will serve a given market if it can break even

- ▶ If e ≠ e*,
 ▶ Firm serves Home market iff e ≥ ê(F)
 ▶ Firm serves Foreign market iff e* ≥ ê(F)
- If $e = e^*$, firm serves both markets iff $e = e^* \ge \hat{e}(\frac{F}{2})$

Firm will serve a given market if it can break even

- ▶ If e ≠ e*,
 ▶ Firm serves Home market iff e ≥ ê(F)
 ▶ Firm serves Foreign market iff e* ≥ ê(F)
- If $e = e^*$, firm serves both markets iff $e = e^* \ge \hat{e}(\frac{F}{2})$
- ► In what follows, assume α and F such that Firm always serves Home market $(e_W(\alpha) \ge \hat{e}(F))$

 $\max_{e^*} W^*(e^*) \quad s.t. \quad (PC)$

$$\max_{e^*} W^*(e^*) \quad s.t. \quad (PC) \qquad \qquad e^*_W = \arg\max_{e^*} W^*(e^*)$$

$$\max_{e^*} W^*(e^*) \quad s.t. \quad (PC) \qquad \qquad e^*_W = \arg\max_{e^*} W^*(e^*)$$

▶ *PC* binding iff $e_W^*(\alpha^*) < \hat{e}(F) \to F > \hat{F}(\alpha^*)$, where $\hat{F}'(\cdot) < 0$

$$\max_{e^*} W^*(e^*) \quad s.t. \quad (PC) \qquad \qquad e^*_W = \arg\max_{e^*} W^*(e^*)$$

▶ *PC* binding iff $e_W^*(\alpha^*) < \hat{e}(F) \to F > \hat{F}(\alpha^*)$, where $\hat{F}'(\cdot) < 0$

Implications of firm's break-even constraint

Multiple harmony equilibria may arise even with one-way trade

Implications of firm's break-even constraint

- Multiple harmony equilibria may arise even with one-way trade
- Cooperative harmony may create trade at the extensive margin

Implications of firm's break-even constraint

- Multiple harmony equilibria may arise even with one-way trade
- Cooperative harmony may create trade at the extensive margin
- Under lobbying, agreement may inefficiently harmonize and create welfare reducing trade